
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 8- Class 1:
File I/O

• Large Programming Assignment 1 is due on Friday!!

• SPA 1 & 2 Grades will be available tomorrow.

2

Administrivia

1. Quick Recap of past concepts

2. File I/O in C!!

3

Today’s Agenda

Course Logistics

4

Quick Review

5

What are Pointers?

• Pointers are variables that store the address of a memory
cell that contains a certain data type.

• * indicates that variable holds a memory location of certain
type

• & is the address

int m = 25; // stored in address AA0

 int *itemp = &m;

Stack Space
AA3
AA2
AA1 itemp	=	AA0
AA0 m	=	25

6

The Dreference Operator *

• We have seen so far in this course that everything is
stored somewhere in memory.

• Each memory has its own unique address.

• The pointer variable holds the specific address.

• The dereference operator acts like a “magic key” that
allows access to the value stored.

• * is known as deference in C.

7

The Address Operator &

• We have been using & in our programs ever since scanf was introduced.

• & means address of

• Holds a value in hexadecimal that represents the location in  
memory.  
• This done with the placeholder %p.  
• Hexadecimal is a base 16 number. This means there are 16 unique
digits.

• Think about it. Every time we used scanf(“%d”,	&num) we were telling
the compiler to store the value at the Memory Address of the variable
named num.

8

The Pointer Placeholder %p

• There exists a special placeholder that can display the
memory address of a reference.

 int m = 25; // stored in address AA0

 int *itemp = &m;

 printf("The address of m is %p\n", &m);

 printf("The address of itemp is %p\n", &itemp);

 printf("itemp holds the value %p\n", itemp);

• In past sessions, we have seen that variables have
been passed by value.

• With pointers, we can now past variables by reference.

• Instead of making a local copy for the function, we can
pass the memory location and perform computation
on the variable in its original location. This is known as
pass-by-reference.

9

Functions with Parameters

#include <stdio.h>

void increaseValue(int *num);

void calculate();

int var; // global variable BAD!!

int main(void){

int num = 13;

 printf("num = %d\n", num);

return 0;

}

void calculate(){

 int num1; // local variable

 int num2; // local variable

 scanf("%d%d", &num1, &num2);

 int result = num1 + num2;

}

• Scope of a name refers to the
region in a program where a
particular meaning of a name is
visible.

• Local and Global Variables

• When variables are being used,
certain functions may not be
able to access them due to
where they were declared!

• Why can’t everything be
global? Would that be easier?

10

Scope of Names

Course Logistics

11

File I/O in C

• Everything in memory has an address. (represented in
hexadecimal)

• When we accessed a value from a variable name we were able to
directly access that exact space in memory the value is stored at.

• In previous lessons, we have named spaces in memory which
was used to access the values stored.

• In C, we can also access parts of memory indirectly through
pointers!

• Pointer – a memory cell that sores the address (hexadecimal) of a
data item

12

Memory 101 Concepts

• In C we can access files (such as text files)

• This access allows for reading and writing.

• Reading – Input

• Writing – Output

• There is a special kind of variable in C that allows us access for
text files.

• File Pointers!

13

Files

FILE *inp; // pointer to input file

FILE *outp; // pointer to output file

• There are two basic types of access we will learn in this
class

• Reading – this allows the program to collect input
from a text file. Think of it like scanf for collecting
input from the keyboard

• Writing – this allows the program to write output to a
text file. Think of it like printf for displaying output to
the monitor

14

File Pointer Access

• There are other modes for FILE I/O Access besides r and w mode.

• a – append mode

• Adds content to the next available space in the File

• r+ – both reading and writing

• Acts as both r and w mode. Assumes that File exists in memory

• If file does not exist then it doesn’t work

• w+ – both reading and writing

• Acts as both and w mode. Doesn’t assume that File exist in memory

• If it does exist already, content will be deleted by setting the length to zero bytes

• If it doesn’t exist, it will create the File

• a+ – both reading and writing

• If file doesn’t exist, it will create it

• When reading, pointer starts at the beginning of the file content

• Writing to file will only be appended
15

Other Types of File I/O Access

16

Syntax for Allowing Proper File Access

// preparing files for input and output

inp = fopen("indata.txt", "r");

outp = fopen("outdata.txt", "w");

17

Syntax for File Reading/Writing

// preparing files for input and output

inp = fopen("indata.txt", "r");

outp = fopen("outdata.txt", "w");

fscanf(inp, "%lf", &item); // reading file

fprintf(outp, "%f", item); // writing file

18

printf, scanf, fprintf, and fscanf

FILE *inp; // pointer to input file

FILE *outp; // pointer to output file

// preparing files for input and output

inp = fopen("indata.txt", "r");

outp = fopen("outdata.txt", "w");

scanf("%lf", &item); // reading input from command line

fscanf(inp, "%lf", &item); // reading input from file

printf("%f", item); // printing information to command line

fprintf(outp, "%f", item); // writing file

fclose(inp);

fclose(outp);

19

printf, scanf, fprintf, and fscanf

FILE *inp; // pointer to input file

FILE *outp; // pointer to output file

// preparing files for input and output

inp = fopen("indata.txt", "r");

outp = fopen("outdata.txt", "w");

scanf("%lf", &item); // reading input from command line

fscanf(inp, "%lf", &item); // reading input from file

printf("%f", item); // printing information to command line

fprintf(outp, "%f", item); // writing file

fclose(inp);

fclose(outp);

{

{

Notice the
placeholder
and variable

address

Notice the
placeholder
and variable

20

printf, scanf, fprintf, and fscanf

FILE *inp; // pointer to input file

FILE *outp; // pointer to output file

// preparing files for input and output

inp = fopen("indata.txt", "r");

outp = fopen("outdata.txt", "w");

scanf("%lf", &item); // reading input from command line

fscanf(inp, "%lf", &item); // reading input from file

printf("%f", item); // printing information to command line

fprintf(outp, "%f", item); // writing file

fclose(inp);

fclose(outp);

{

{

Notice the
placeholder
and variable

address

Notice the
placeholder
and variable

The only
addition is the

file pointer!

• Remember way back we talked about what the scanf	
function returns?

• An integer value representing the number of values
successfully processed.

• We just observed the similar syntax for the scanf and
fscanf functions.

• Does fscanf return a similar value?

• YES!!

• It returns the number of values processed successfully.
This also includes 0 if it was unable to process the first
value being collected.

21

The	fscanf Function

• C has a special predefined macro constant called EOF in the
stdio header file.

• EOF stands for “End Of File”

• The value of EOF is −1. 0 is still used if it can read something
potential, BUT wasn’t processed successfully.

• EOF is widely used to assist with reading an ENTIRE file.

22

EOF Macro Constant

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, "%lf", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

23

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0

1

12

5

File pointer has access to
contents of the text file.

Here inp

24

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	???

1

12

5

Integer variable called, item
declared in stack space.

Here
inp

25

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	1

1

12

5

fscanf is called and can read the value 1
successfully, which results in 1 being

returned. The while loop condition is true.

Here

inp

26

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	1

1

12

5

Display the value stored in
item.

Here

inp

item = 1

27

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	1

1

12

5

Here

inp

item = 1

28

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	1

1

12

5Here

inp

item = 1

True

29

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	12

1

12

5Here

inp

item = 1

fscanf is called and can read the value
12 successfully, which results in 1 being

returned. The while loop condition is true.

30

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	12

1

12

5

Here

inp

item = 1

Display the value stored in
item.

item = 12

31

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	12

1

12

5

Here

inp

item = 1
item = 12

32

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	5

1

12

5Here

inp

item = 1
item = 12

fscanf is called and can read the value 5
successfully, which results in 1 being

returned. The while loop condition is true.

33

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	5

1

12

5

Here

inp

item = 1
item = 12

Display the value stored in
item.

item = 5

34

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	5

1

12

5

Here

inp

item = 1
item = 12
item = 5

35

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	5

1

12

5Here

inp

item = 1
item = 12
item = 5

False

36

EOF Example

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, “%d", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Stack Space
AA1 inp	=	Some	Address

AA0 item	=	5

1

12

5

Here

inp

item = 1
item = 12
item = 5

File stream is now closed

• After you done accessing the file for reading or writing you
must CLOSE the file.

• If you forget to close the file, the program will still run BUT
leaves files open with access.

• It’s a common mistake beginners make. Remember after
opening to close the files.

37

One Last Thing…

fclose(inp);

fclose(outp);

38

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

