
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 8- Class II:
Arrays Part I

• Large Programming Assignment 1 is due on Friday!!

• SPA 1 Grades out now.

• SPA 2 Grades out today.

2

Administrivia

1. File I/O Example

2. Begin Discussing Arrays in C

3

Today’s Agenda

Course Logistics

4

Quick Review

• In C we can access files (such as text files)

• This access allows for reading and writing.

• Reading – Input

• Writing – Output

• There is a special kind of variable in C that allows us access for
text files.

• File Pointers!

5

Files

FILE *inp; // pointer to input file
FILE *outp; // pointer to output file

• There are two basic types of access we will learn in this
class

• Reading – this allows the program to collect input
from a text file. Think of it like scanf for collecting
input from the keyboard

• Writing – this allows the program to write output to a
text file. Think of it like printf for displaying output to
the monitor

6

File Pointer Access

• There are other modes for FILE I/O Access besides r and w mode.

• a – append mode

• Adds content to the next available space in the File

• r+ – both reading and writing

• Acts as both r and w mode. Assumes that File exists in memory

• If file does not exist then it doesn’t work

• w+ – both reading and writing

• Acts as both and w mode. Doesn’t assume that File exist in memory

• If it does exist already, content will be deleted by setting the length to zero bytes

• If it doesn’t exist, it will create the File

• a+ – both reading and writing

• If file doesn’t exist, it will create it

• When reading, pointer starts at the beginning of the file content

• Writing to file will only be appended
7

Other Types of File I/O Access

8

Syntax for File Reading/Writing

// preparing files for input and output
inp = fopen("indata.txt", "r");
outp = fopen("outdata.txt", "w");

fscanf(inp, "%lf", &item); // reading file
fprintf(outp, "%f", item); // writing file

9

printf, scanf, fprintf, and fscanf

FILE *inp; // pointer to input file
FILE *outp; // pointer to output file

// preparing files for input and output
inp = fopen("indata.txt", "r");
outp = fopen("outdata.txt", "w");

scanf("%lf", &item); // reading input from command line
fscanf(inp, "%lf", &item); // reading input from file

printf("%f", item); // printing information to command line
fprintf(outp, "%f", item); // writing file

fclose(inp);
fclose(outp);

{

{

Notice the
placeholder
and variable

address

Notice the
placeholder
and variable

The only
addition is the

file pointer!

• Remember way back we talked about what the scanf	
function returns?

• An integer value representing the number of values
successfully processed.

• We just observed the similar syntax for the scanf and
fscanf functions.

• Does fscanf return a similar value?

• YES!!

• It returns the number of values processed successfully.
This also includes 0 if it was unable to process the first
value being collected.

10

The	fscanf Function

• C has a special predefined macro constant called EOF in the
stdio header file.

• EOF stands for “End Of File”

• The value of EOF is −1. 0 is still used if it can read something
potential, BUT wasn’t processed successfully.

• EOF is widely used to assist with reading an ENTIRE file.

11

EOF Macro Constant

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, "%lf", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

Course Logistics

12

Arrays

• Data structures is a composite of related data items
stored under the same name.

• Data structures allows programmers to store data in a
more organized fashion.

13

Data Structures

• An Array is a collection of data items of the same type.

• An array element is a data item that is part of an array.

• An array is a collection of two or more adjacent
memory cells.

14

Arrays

4 2 46 3 8 55 3
0 1 2 3 4 5 6

Array Element

15

Declaring an Array

int x[8];

Type of values
stored in array Identifier

Number of
elements

16

Arrays and Stack Visualization

int x[8];

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0

17

Arrays and Stack Visualization

int x[8];

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0

Here we have an array
(called x) of 8 elements.
That means there are 8
adjacent cells occupied.

18

Arrays and Stack Visualization

int x[8];

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0

Here we have an array
(called x) of 8 elements.
That means there are 8
adjacent cells occupied.

Course Logistics

19

Array Demo

20

Arrays and Stack Visualization

for(int x = 0; x < 8; x++){

 printf("&arr[%d] is %p\n", x, &arr[x]);

}

&arr[0] is 0x16fc22f08
&arr[1] is 0x16fc22f0c
&arr[2] is 0x16fc22f10
&arr[3] is 0x16fc22f14
&arr[4] is 0x16fc22f18
&arr[5] is 0x16fc22f1c
&arr[6] is 0x16fc22f20
&arr[7] is 0x16fc22f24

Addresses in Memory
are hexadecimal

21

Arrays and Stack Visualization

for(int x = 0; x < 8; x++){

 printf("&arr[%d] is %p\n", x, &arr[x]);

}

&arr[0] is 0x16fc22f08
&arr[1] is 0x16fc22f0c
&arr[2] is 0x16fc22f10
&arr[3] is 0x16fc22f14
&arr[4] is 0x16fc22f18
&arr[5] is 0x16fc22f1c
&arr[6] is 0x16fc22f20
&arr[7] is 0x16fc22f24

Addresses in Memory
are hexadecimal

Addresses are Increasing by 4 …
Why is this?

22

Arrays and Stack Visualization

for(int x = 0; x < 8; x++){

 printf("&arr[%d] is %p\n", x, &arr[x]);

}

&arr[0] is 0x16fc22f08
&arr[1] is 0x16fc22f0c
&arr[2] is 0x16fc22f10
&arr[3] is 0x16fc22f14
&arr[4] is 0x16fc22f18
&arr[5] is 0x16fc22f1c
&arr[6] is 0x16fc22f20
&arr[7] is 0x16fc22f24

Addresses in Memory
are hexadecimal

Addresses are Increasing by 4 …
Why is this?

ints are 4 bytes!

23

Arrays and Stack Visualization

for(int x = 0; x < 8; x++){

 printf("&arr[%d] is %p\n", x, &arr[x]);

}

&arr[0] is 0x16fc22f08
&arr[1] is 0x16fc22f0c
&arr[2] is 0x16fc22f10
&arr[3] is 0x16fc22f14
&arr[4] is 0x16fc22f18
&arr[5] is 0x16fc22f1c
&arr[6] is 0x16fc22f20
&arr[7] is 0x16fc22f24

Addresses in Memory
are hexadecimal

Addresses are Increasing by 4 …
Why is this?

ints are 4 bytes!

What happens for doubles/floats?

• We have already observed the adjacent memory cells
by displaying their addresses.

• What about the actual array variables?

• For example: Where do you think the variable arr itself
is located?

24

Array Variables

int arr[8];

printf("&arr = %p\n", &arr);

for(int x = 0; x < 8; x++){

 printf("&arr[%d] is %p\n", x, &arr[x]);

}

• We have already observed the adjacent memory cells
by displaying their addresses.

• What about the actual array variables?

• For example: Where do you think the variable arr itself
is located?

25

Array Variables

int arr[8];

printf("&arr = %p\n", &arr);

for(int x = 0; x < 8; x++){

 printf("&arr[%d] is %p\n", x, &arr[x]);

}

&arr = 0x16dd72f08
&arr[0] is 0x16dd72f08
&arr[1] is 0x16dd72f0c
&arr[2] is 0x16dd72f10
&arr[3] is 0x16dd72f14
&arr[4] is 0x16dd72f18
&arr[5] is 0x16dd72f1c
&arr[6] is 0x16dd72f20
&arr[7] is 0x16dd72f24

• We have already observed the adjacent memory cells
by displaying their addresses.

• What about the actual array variables?

• For example: Where do you think the variable arr itself
is located?

26

Array Variables

int arr[8];

printf("&arr = %p\n", &arr);

for(int x = 0; x < 8; x++){

 printf("&arr[%d] is %p\n", x, &arr[x]);

}

&arr = 0x16dd72f08
&arr[0] is 0x16dd72f08
&arr[1] is 0x16dd72f0c
&arr[2] is 0x16dd72f10
&arr[3] is 0x16dd72f14
&arr[4] is 0x16dd72f18
&arr[5] is 0x16dd72f1c
&arr[6] is 0x16dd72f20
&arr[7] is 0x16dd72f24The first adjacent stack cell is the actual place

where the array variable is stored in memory.

27

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

