
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 6 - Class 3:
Pointers - Part I

• Small Programming Assignment 2 and Large
Programming Assignment 1 are out!!

• We will go over these in a minute.

• All assignments will be returned this week.

• Exams grades will be released today.

2

Administrivia

1. Quick Recap of past concepts

2. More on Loops!

3

Today’s Agenda

Course Logistics

4

Quick Review

5

The For Statement

• While loops are very useful when programmers aren’t sure
how many time a set of instructions should be executed.

• For loops are another type of loops where we know exactly
how many times a group set of instructions needs to be
executed

• There are three components to the for loop:

• Initialization of the loop control variable

• Test of the loop repetition condition

• Update to the loop control variable

int num_iters = 10;

for(int count = 0; count < num_iters; count ++){

 // Do stuff here

}

6

The For Statement

Initialization Loop Repetition
Condition

Update

int num_iters = 10;

for(int count = 0; count < num_iters; count ++){

 // Do stuff here

}

7

For Loop Control Flow

1 2

3

4

8

Nested Loops

• The past examples we have only observed one loop.
However, it is possible to have loops within loops (nested
loops)

• Nested loops have the following terminology:

• Outer loop

• Inner loop for(int x = 0; x < 5; ++x){ // Outer Loop

 for(int y = 0; y < 2; ++y){ // Inner Loop

 printf("x = %d\n", x);

 printf("y = %d\n", y);

 }

}

9

Do-While Loops

• For loops allow programmers to execute instructions a set
number times.

• While loops allow programmers to execute instructions
multiple times until a condition is met.

• Do-while loops allow programmer to execute instructions
multiple times until a condition is met, however the
instructions will be executed once at least.

10

Do-While Loop Example

char letter_choice;

do{

printf("Enter a latter from A through E: ");

scanf(" %c", &letter_choice);

}while(letter_choice >= 'A' && letter_choice <= 'E');

1

2

Course Logistics

11

Introduction to Pointers in C

12

Quick Recap

• So far in this course, we have been doing call-by-value
with variables.

• Call-by-value makes a temporary copy for the custom
function in RAM and references that cell for all access and
computational purposes.

13

Revisiting the Stack Space

• Remember in the beginning of the course we mentioned
that every memory cell has a unique address.

Stack Space
AA9
AA8
AA7
AA6
AA5
AA4
AA3
AA2
AA1
AA0

Memory

Addresses

Now we are going to
understand how we
can store memory

addresses in variables
to reference them in

new places!

14

What are Pointers?

• Pointers are variables that store the address of a memory
cell that contains a certain data type.

• * indicates that variable holds a memory location of certain
type

• & is the address

int m = 25; // stored in address AA0

 int *itemp = &m;

Stack Space
AA3
AA2
AA1 itemp	=	AA0
AA0 m	=	25

15

Examples of Pointers

 int *ptr; // Points to a memory cell holding an int value

 double *ptr2; // Points to a memory cell holding a double value

 char *ptr3; // Points to a memory cell holding a double value

 float *ptr4; // Points to a memory cell holding a float value

16

Why Use Pointers?

• To pass arguments by reference (e.g., easily share information between
functions)

• For accessing array elements

• To return multiple values

• Dynamic memory allocation

• To implement data structures

• To do system-level programming where memory addresses are useful

17

With Great Power…

• If pointers are pointed to some incorrect location then it may end up
reading a wrong value.

• Erroneous input always leads to an erroneous output

• Segmentation fault can occur due to uninitialized pointer.

• Pointers are slower than normal variable

• It requires one additional dereferences step

• If we forgot to deallocate a memory then it will lead to a memory leak.

18

Indirect Referencing

• Indirect reference is accessing the contents of a memory
cell through a pointer variable that stores its address.

• This is known as the dereference operator.

int m = 25; // stored in address AA0

 int *itemp = &m;

 *itemp = 14;

Stack Space
AA3
AA2
AA1
AA0 m	=	25

Here

19

Indirect Referencing

• Indirect reference is accessing the contents of a memory
cell through a pointer variable that stores its address.

• This is known as the dereference operator.

int m = 25; // stored in address AA0

 int *itemp = &m;

 *itemp = 14;

Stack Space
AA3
AA2
AA1 itemp	=	AA0
AA0 m	=	25

Here

20

Indirect Referencing

• Indirect reference is accessing the contents of a memory
cell through a pointer variable that stores its address.

• This is known as the dereference operator.

int m = 25; // stored in address AA0

 int *itemp = &m;

 *itemp = 14;

Stack Space
AA3
AA2
AA1 itemp	=	AA0
AA0 m	=	14

Here

21

The Dreference Operator *

• We have seen so far in this course that everything is
stored somewhere in memory.

• Each memory has its own unique address.

• The pointer variable holds the specific address.

• The dereference operator acts like a “magic key” that
allows access to the value stored.

• * is known as deference in C.

22

The Address Operator &

• We have been using & in our programs ever since scanf was introduced.

• & means address of

• Holds a value in hexadecimal that represents the location in  
memory.  
• This done with the placeholder %p.  
• Hexadecimal is a base 16 number. This means there are 16 unique
digits.

• Think about it. Every time we used scanf(“%d”,	&num) we were telling
the compiler to store the value at the Memory Address of the variable
named num.

23

The Pointer Placeholder %p

• There exists a special placeholder that can display the
memory address of a reference.

 int m = 25; // stored in address AA0

 int *itemp = &m;

 printf("The address of m is %p\n", &m);

 printf("The address of itemp is %p\n", &itemp);

 printf("itemp holds the value %p\n", itemp);

24

Pointer Example

int a = 1;

 int b = 2;

 int c = 3;

 int *p;

 int *q;

 p = &a; // set p to refer to a

 q = &b; // set q to refer to b

25

Pointer Example

int a = 1;

 int b = 2;

 int c = 3;

 int *p;

 int *q;

 p = &a; // set p to refer to a

 q = &b; // set q to refer to b

 c = *p; // retrieve p's pointee value (1) and put it in c

 p = q; // change p to share with q (p's pointee is now b)

 *p = 13; // dereference p to set its pointee (b) to 13 (*q is now 13)

26

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

