COP 3223H:

Introduction to
C Programming

Week 6 - Class 3:
“ointers - Part |

Fall 2023

G

University of
Central Florida >

Dr. Kevin Moran

Administrivia

&

e Small Programming Assignment 2 and Large
Programming Assignment 1 are out!!

e \Ve will go over these in a minute.

e All assignments will be returned this week.

e Exams grades will be released today.

loday's Agenda

1. Quick Recap of past concepts

2. More on Loops!

Quick Review g@)

The For Statement (¢

® \While loops are very useful when programmers aren’t sure
how many time a set of instructions should be executed.

® or loops are another type of loops where we know exactly
how many times a group set of instructions needs to be
executed

® [here are three components to the for loop:
e |nitialization of the loop control variable

® [est of the loop repetition condition
e Update to the loop control variable L‘” =l j

10;

int num\iters

for(int count = 0; count < num_iters; count ++){

// Do stuff here

For Loop Control Flow

&

1nt num\iters

for(int count = 0; count < num_iters; count ++){

// Do stuff

10;

here

T

|

T

|

Nestec

OO

DS

&

® [he past examples we have only observed one loop.
However, It is possible to have loops within loops (nested

lo0opS)

® Nested loops have the following terminology:

e (Quter loop

® |nner loop

for(int x = 0; x < 5; ++x){ // Outer Loop

for(int y = 0; y < 2; ++y){ // Inner Loop

}

printf ("
printf ('

%d\n", X);
%sd\n", y);

Do-While Loops

® [or loops allow programmers to execute instructions a set
number times.

® \While loops allow programmers to execute instructions
multiple times until a condition Is met.

® Do-while loops allow programmer to execute instructions
multiple times until a condition is met, however the
instructions will be executed once at least.

Do-While Loo

D Exam

dle

&

chaX letter_choice;

do{

rintf("Enter a latter from A through E: "

scanf(" %c", &letter choice);

twhile(letter_choice >= 'A' && letter_choice <=

10

«»

B

IEI);

Introduction to

Pointers In C

pa .

11

Quick Recap (¢

® S0 far in this course, we have been doing call-by-value
with variables.

e Call-by-value makes a temporary copy for the custom
function iIn RAM and references that cell for all access and
computational purposes.

12

Revisiting the Stack S

DACE

&

® Remember in the beginning of the course we mentioned
that every memory cell has a unigue address.

-

U

o
Memory

Addresses

J

13

Stack
AA9

AA8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAQ

Space

fNow we are going a

understand how we
can store memory
addresses in variables
to reference them in

K new places! J

VWhat are Pointers!?

&

® Pointers are variables that store the address of a memory

cell that contains a certain data type.

® * Indicates that variable holds a memory location of certain

type

® & IS the address

int m = 25; // stored in address AA0Q

int xitemp = &m;

14

Stack

AA3
AA2
AAl
AAO

Space

itemp = AAO
m = 25

Fxamples of

Pointers

&

int *ptr;
double *ptr2;
char *xptr3;
float *xptr4;

15

// Points
// Points
// Points
// Points

to
to
to
to

Vv YV Y

memory
memory
memory
memory

cell holding an int value

cell holding a double value
cell holding a double value
cell holding a float value

Why Use Pointers?

&

® [0 pass arguments by reference (e.g., easily share information between
functions)

® [or accessing array elements
® [0 return multiple values

® Dynamic memory allocation
® [0 implement data structures

® [0 do system-level programming where memory addresses are useful

16

With Great Power. ..

17

® |[f pointers are pointed to some incorrect location then it may end up
reading a wrong value.

® Erroneous input always leads to an erroneous output

® Segmentation fault can occur due to uninitialized pointer.

® Pointers are slower than normal variable

® [t requires one additional dereferences step

® |f we forgot to deallocate a memory then it will lead to a memory leak.

Indirect Referencing

® |ndirect reference Is accessing the contents of a memory
cell through a pointer variable that stores its address.

® [his is known as the dereference operator.

Here

int m = 25; // stored in address AAQ
Stack Space

int xitemp = &m; AA3
xitemp = 14; AAZ
AAl

AAO m = 25

18

Indirect Referencing

&

® |ndirect reference Is accessing the contents of a memory
cell through a pointer variable that stores its address.

® [his is known as the dereference operator.

int m = 25; // stored in address AAQ

Here
int xitemp = &m;

xitemp = 14,

19

Stack Space
AA3

AA2
AAl itemp = AAO
AAO m = 25

Indirect Referencing

&

® |ndirect reference Is accessing the contents of a memory
cell through a pointer variable that stores its address.

® [his is known as the dereference operator.

int m = 25; // stored in address AAQ

int xitemp = &m;
Here
xitemp = 14,

20

Stack Space
AA3

AA2
AAl itemp = AAO
AAO m = 14

The Dreference Operator * (¢

® \\le have seen so far in this course that everything is
stored somewhere in memory.

® Fach memory has its own unigue address.
® [he pointer variable holds the specific address.

® [he dereference operator acts like a “magic key” that
allows access to the value stored.

® * s known as deference in C.

ao
O.

21

The Address Operator &

® \\Ve have been using & In our programs ever since scanf was introduced.

® & means address of

® Holds a value in hexadecimal that represents the location in
memory.
e This done with the placeholder %p.

e Hexadecimal is a base 16 number. This means there are 16 unigue
digits.

e [hink about it. Every time we used scanf(“%d”, &num) we were telling

the compiler to store the value at the Memory Address of the variable
named num.

22

The Pointer Placeholder 96p

&

® [here exists a special placeholder that can display the
memory address of a reference.

int m = 25; // stored in address AAQ
int xitemp = &m;
orintf("The address of m is %p\n", &m);

orintf("The address of itemp is %p\n", &itemp);
orintf("itemp holds the value %p\n", itemp);

23

Pointer Example (¢

int a = 1;
int b
int C
int *xp;
int *q;

WN

&a; // set p to refer to a
&b; // set g to refer to b

O O
Il

Pointer Example (¢

= &a; // set p to refer to a
= &b; // set q to refer to b

@]

= xp; // retrieve p's pointee value (1) and put it in c
p =0q; // change p to share with g (p's pointee is now b)
xp = 13; // dereference p to set its pointee (b) to 13 (xg is now 13)

a 1 ;Xf | P

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

26

