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• Small Programming Assignment 2 and Large 
Programming Assignment 1 will come out soon!


• All assignments will be returned this week.


• Exams grades will be released by Friday.
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Administrivia



1. Quick Recap of past concepts


2. Introduction to Repetition and Loops
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Today’s Agenda



Course Logistics
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Quick Review



• Function definitions allow us to define our own 
instructions • Reliable 


• Reusable


• Good Practice! 


• Conditions allows to execute a set of instructions based 
on a condition test. 


• Compare and Relational Operators


• Logical Operators
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Function Definitions & Conditions



• Programmers may need a set instructions to repeat a certain 
amount of times. 


• Programmers could write the same set of instructions multiple 
times until it is satisfied. (Bad Practice!) 


• This can make files look unnecessarily large and complex.


• It becomes less readable and maintainable.  

• In C (and most languages), there is a special syntax that allows 
programmers to set instructions to repeat.  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Introduction to Repetition
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Different Kinds of Loops

Comparison of Different Loop Types

Type When to Use C Implementation

Counting Loop When you know the number 
of iterations the loop will 

need.


while, for

Sentinel Controlled Loop Input a list of data of any 
length ended by a special 

value.

while, for

Endfile-controlled Loop Input any list of data of any 
length from a data file.

while, for

Input Validation Loop Repeated interactive input of 
a data value until this value is 

within the desired range

do-while

General Conditional Loop Repeated processing of data 
until a desired condition is 

met

while, for
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Counting Loops

• Counting loops are loops whose required number of 
iterations can be determined before loop execution 
begins. 


• In simple English, Programmers know how many times a 
set of instructions needs to be executed. 


• Example:


• Multiplication
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While Loops

• A type of loop that repeats a set of instructions until a 
condition is met. 


• Loop repetition condition is the condition that controls 
loop repetition. 


• Syntax:

while(condition)

{

    // instructions go here

}




Code inside the 
control structure is 

evaluated if the 
condition was true

First condition is 
evaluated

10

Understanding the While Loop Flow

while(condition)

{

    // instructions go here

}




int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}
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While Loop Example

Here Stack Space
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int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}
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While Loop Example

Here

Stack Space
AA9

AA8

AA7
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AA1

AA0 num1	=	1



int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}
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While Loop Example

Here

Stack Space
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AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	1

True



int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}
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While Loop Example

Here

Stack Space
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int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}
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While Loop Example

Here

Stack Space
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int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}
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While Loop Example

Here

Stack Space
AA9

AA8
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AA0 num1	=	2

num	=	1.

Now we go back to the 
condition to see if it is still true.



int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}
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While Loop Example

Here

Stack Space
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num	=	1.

True



int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}
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While Loop Example

Here
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int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}
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While Loop Example

Here

Stack Space
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int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}
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While Loop Example

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	3

num	=	1.

num	=	2.

Now we go back to the 
condition to see if it is still true.



int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}
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While Loop Example

Here

Stack Space
AA9

AA8
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AA0 num1	=	3

num	=	1.

num	=	2.

False!
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While Loop Example

int main(void){


int num = 1;


while(num < 3){


    printf("num = %d\n.”, num);

    num = num +1;

}


return 0;


}


Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	3

num	=	1.

num	=	2.
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Continue Statement

• There is a special 
keyword in C called 
continue that can cause 
an iteration to be skipped. 


• What will the code 
fragment display?  

• Why does this even exist? 


• In larger programs, 
there might be special 
iterations where a 
certain set values may 
be invalid to use.

int num = 10;


while(num > 0){

    if(num ==5){

        num -= 1;

        continue;

    }


    printf("Continue: num=%d\n.", num);


    num -= 1;


}
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In-Class Exercise

• What is displayed by the program fragment for 
an input of 8?

int n;

printf("Please enter a loop number:\n");

scanf("%d", &n);

int ev = 0;


while(ev < n){

    printf("%3d", ev);

    ev +=2;

}


printf("\n");


http://bit.ly/3t5fcDp
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In-Class Exercise

• You may have noticed instructions where variable have 
assignment statement that involves itself. 


• var1	=	var1	+	1; 


• var2	=	var2	–	2; 


• C, this can be rewritten as a compound statement.


• +:	+=		e.g.,	var1	+=	1;


• -:	-=		e.g.,	var2	-=	2;


• *:	*=	


• /:	/=	


• %:	%=	
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Examples of Compound Assignment Operators

Compound Assignment Operators

count_emp	=	count_emp	+	1; count_emp	+=	1;

time	=	time	–	1; time	−=	1;

total_time	=	total_time	+	
times; total_time	+=	times;

product	=	product	∗	item; product	∗=	item;

n	=	n	∗	(x	+	1); n	∗=	(x	+	1);
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In-Class Exercise

• Write the equivalents for the following statements 
using compound assignment operators: 

s = s / 5;


q = q * (n + 4);


z = z - x * y;


t = t + (u % v);

http://bit.ly/3LCpwcp



28

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s 
COP 3223H course 



