COP 3223H:

Introduction to
C Programming

Week 6 - Class |:
Loops Part |

Fall 2023

University of

Central Florida E‘(I)EﬁElj

&

Dr. Kevin Moran

AC

ministrivia

&

e Small Programming Assignment 2 and Large
Programming Assignment 1 will come out soon!

o All assignments will be returned this week.

—Xams grades will be released by Friday.

Today's Agenda &

1. Quick Recap of past concepts

2. Introduction to Repetition and Loops

Quick Review g@)

Function Definitions & Conditions

® Function definitions allow us to define our own
INstructions e Reliable

® Reusable
® Good Practice!

e Conditions allows to execute a set of instructions based
on a condition test.

® Compare and Relational Operators

® | ogical Operators

Introduction to Repetition (¢

® Programmers may need a set instructions to repeat a certain
amount of times.

® Programmers could write the same set of instructions multiple
times until it is satisfied. (Bad Practice!)

® [his can make files look unnecessarily large and complex.

® [t becomes less readable and maintainable.

® |n C (and most languages), there is a special syntax that allows
programmers to set instructions to repeat.

Different Kinds of

OOPS

&

Comparison of Different Loop Types

Type

Counting Loop

Sentinel Controlled Loop

Endfile-controlled Loop

Input Validation Loop

General Conditional Loop

When to Use

When you know the number
of iterations the loop will
need.

Input a list of data of any
length ended by a special
value.

Input any list of data of any
length from a data file.

Repeated interactive input of
a data value until this value is
within the desired range

Repeated processing of data
until a desired condition is
met

C Implementation

while, for

while, for

while, for

do-while

while, for

Counting Loops

&

® Counting loops are loops whose required number of
terations can be determined before loop execution
begins.

® |[n simple English, Programmers know how many times a
set of instructions needs to be executed.

® Example:

e Multiplication

While Loops (¢

® A type of loop that repeats a set of instructions until a
condition is met.

® | 00Op repetition condition is the condition that controls
loop repetition.

® Syntax:

while(condition)

1
}

// 1nstructions go here

Understanc

ing the While Loo

-low

&

g Code inside the
control structure is

evaluated If the

>

condition was true

&

)

10

// 1nstructions go here

~ R
First condition is
evaluated
_ Y,
while(condition)
1
I3

While Loop Example

&

Here

sl int main(void)

int num = 1;
while(num < 3){
printf("num = %d\n.”, num);

num = num +1;

}

return 0;

}

B test-c-program — -bash — 61x16

11

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

While Loop Example

&

int main(void){
Here

el int nUM = 1;
while(num < 3){
printf("num = %d\n.”, num);

num = num +1;

}

return 0;

}

B test-c-program — -bash — 61x16

12

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

numl

1

While Loop Example

&

int main(void){
int num = 1;

Here
_>while(num < 3){

printf("num = %d\n.”, num);
num = num +1;

}

return 0;

}

B test-c-program — -bash — 61x16

13

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

numl

1

While Loop Example

&

int main(void){
int num = 1;

while(num < 3){

Here

_’printf("num o %d\n.", num);

num = num +1;
¥

return 0;

}

B test-c-program — -bash — 61x16

14

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

numl

1

While Loop Example

&

int main(void){
int num = 1;
while(num < 3){
Here Printf("num = %d\n.”, num);

_>num = num +1;
¥

return 0;

}

B test-c-program — -bash — 61x16

15

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

numl

2

While Loop Example

&

16

int main(void){

int num = 1;

while(num < 3){

Here

— }

I/ HIll condition to see if it is still true.

}

printf("num = %d\n.”, num);
num = num +1;

Now we go back to the

B test-c-program — -bash — 61x16

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

numl

2

While Loop Example

&

int main(void){
int num = 1;

Here
el While(num < 3){

printf("num = %d\n.”, num);
num = num +1;

}

return 0;

}

B test-c-program — -bash — 61x16

17

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

numl

2

While Loop Example

&

int main(void){
int num = 1;

while(num < 3){

Here

_’printf("num o %d\n.", num);

num = num +1;
¥

return 0;

}

B test-c-program — -bash — 61x16

18

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

numl

2

While Loop Example

&

int main(void){
int num = 1;
while(num < 3){
Here printf("num = %d\n.”, num);

_}num = num +1;
¥

return 0;

}

B test-c-program — -bash — 61x16

19

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

numl

3

While Loop Example

&

20

int main(void){

int num = 1;

while(num < 3){

Here

— }

I/ HIll condition to see if it is still true.

}

printf("num = %d\n.”, num);
num = num +1;

Now we go back to the

B test-c-program — -bash — 61x16

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

numl

3

While Loop Example

&

int main(void){
int num = 1;

Here
el \vhile (num < 3)

printf("num = %d\n.”, num);
num = num +1;

}

return 0;

}

B test-c-program — -bash — 61x16

21

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

numl

3

While Loop Example

&

int main(void){
int num = 1;

while(num < 3){

printf("num =

num = num +1;
I3
Here
el return 0;
¥

22

%d\n."”, num);

B test-c-program — -bash — 61x16

Stack
AA9

AAS8
AA7
AA6
AA5
AA4
AA3
AA2
AAl
AAO

Space

numl

3

Continue Statement

&

23

® [here Is a special
keyword in C called
continue that can cause
an iteration to be skipped.

® What will the code
fragment display?

® \\/hy does this even exist?

® |n |larger programs,
there might be special
iterations where a
certain set values may
be invalid to use.

int num = 10;

while(num > 0){

if(num ==5){
num —= 1;
continue;
¥

printf("Continue:

num —= 1;

num=%d\n.",

num) ;

IN-Class Exercise

® \\Vhat Is displayed by the program fragment for
an input of 87

int n;

printf("Please enter a loop number:\n");
scanf("%sd", &n);

int ev = 0;

while(ev < n){
printf("%3d", ev);
ev +=2:

}

printf("\n");

http://bit.ly/3t5fcDp

24

IN-Class Exercise

&

® You may have noticed instructions where variable have
assignment statement that involves itself.

® varl

® var2

® (, this can be rewritten as a compound statement.

° +:

25

+=

varl + 1;

var2 - 2;

e.g., varl += 1;

e.g., var2 -=

2;

Fxamples of Compound Assisnment Operators

&

Compound Assignment Operators

count_emp count _emp + 1; count _emp += 1;

time

time - 1; time -= 1;

total_time = total_time + total time += times;

times;
product = product x item; product x= item;
n=nsx(x+ 1); n x= (x + 1);

26

IN-Class Exercise

&

® \\Vrite the equivalents for the following statements
using compound assignment operators:

http://bit.ly/3LCpwcp

27

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

28

