
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 6 - Class 1:
Loops Part I

• Small Programming Assignment 2 and Large
Programming Assignment 1 will come out soon!

• All assignments will be returned this week.

• Exams grades will be released by Friday.

2

Administrivia

1. Quick Recap of past concepts

2. Introduction to Repetition and Loops

3

Today’s Agenda

Course Logistics

4

Quick Review

• Function definitions allow us to define our own
instructions • Reliable

• Reusable

• Good Practice!

• Conditions allows to execute a set of instructions based
on a condition test.

• Compare and Relational Operators

• Logical Operators

5

Function Definitions & Conditions

• Programmers may need a set instructions to repeat a certain
amount of times.

• Programmers could write the same set of instructions multiple
times until it is satisfied. (Bad Practice!)

• This can make files look unnecessarily large and complex.

• It becomes less readable and maintainable.  

• In C (and most languages), there is a special syntax that allows
programmers to set instructions to repeat.  

6

Introduction to Repetition

7

Different Kinds of Loops

Comparison of Different Loop Types

Type When to Use C Implementation

Counting Loop When you know the number
of iterations the loop will

need.

while, for

Sentinel Controlled Loop Input a list of data of any
length ended by a special

value.

while, for

Endfile-controlled Loop Input any list of data of any
length from a data file.

while, for

Input Validation Loop Repeated interactive input of
a data value until this value is

within the desired range

do-while

General Conditional Loop Repeated processing of data
until a desired condition is

met

while, for

8

Counting Loops

• Counting loops are loops whose required number of
iterations can be determined before loop execution
begins.

• In simple English, Programmers know how many times a
set of instructions needs to be executed.

• Example:

• Multiplication

9

While Loops

• A type of loop that repeats a set of instructions until a
condition is met.

• Loop repetition condition is the condition that controls
loop repetition.

• Syntax:

while(condition)

{

 // instructions go here

}

Code inside the
control structure is

evaluated if the
condition was true

First condition is
evaluated

10

Understanding the While Loop Flow

while(condition)

{

 // instructions go here

}

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

11

While Loop Example

Here Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

12

While Loop Example

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	1

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

13

While Loop Example

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	1

True

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

14

While Loop Example

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	1

num	=	1.

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

15

While Loop Example

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	2

num	=	1.

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

16

While Loop Example

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	2

num	=	1.

Now we go back to the
condition to see if it is still true.

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

17

While Loop Example

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	2

num	=	1.

True

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

18

While Loop Example

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	2

num	=	1.

num	=	2.

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

19

While Loop Example

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	3

num	=	1.

num	=	2.

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

20

While Loop Example

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	3

num	=	1.

num	=	2.

Now we go back to the
condition to see if it is still true.

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

21

While Loop Example

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	3

num	=	1.

num	=	2.

False!

22

While Loop Example

int main(void){

int num = 1;

while(num < 3){

 printf("num = %d\n.”, num);

 num = num +1;

}

return 0;

}

Here

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0 num1	=	3

num	=	1.

num	=	2.

23

Continue Statement

• There is a special
keyword in C called
continue that can cause
an iteration to be skipped.

• What will the code
fragment display?

• Why does this even exist?

• In larger programs,
there might be special
iterations where a
certain set values may
be invalid to use.

int num = 10;

while(num > 0){

 if(num ==5){

 num -= 1;

 continue;

 }

 printf("Continue: num=%d\n.", num);

 num -= 1;

}

24

In-Class Exercise

• What is displayed by the program fragment for
an input of 8?

int n;

printf("Please enter a loop number:\n");

scanf("%d", &n);

int ev = 0;

while(ev < n){

 printf("%3d", ev);

 ev +=2;

}

printf("\n");

http://bit.ly/3t5fcDp

25

In-Class Exercise

• You may have noticed instructions where variable have
assignment statement that involves itself.

• var1	=	var1	+	1;

• var2	=	var2	–	2;

• C, this can be rewritten as a compound statement.

• +:	+=		e.g.,	var1	+=	1;

• -:	-=		e.g.,	var2	-=	2;

• *:	*=	

• /:	/=	

• %:	%=	

26

Examples of Compound Assignment Operators

Compound Assignment Operators

count_emp	=	count_emp	+	1; count_emp	+=	1;

time	=	time	–	1; time	−=	1;

total_time	=	total_time	+	
times; total_time	+=	times;

product	=	product	∗	item; product	∗=	item;

n	=	n	∗	(x	+	1); n	∗=	(x	+	1);

27

In-Class Exercise

• Write the equivalents for the following statements
using compound assignment operators:

s = s / 5;

q = q * (n + 4);

z = z - x * y;

t = t + (u % v);

http://bit.ly/3LCpwcp

28

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

