
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 5 - Class 1:
Grouping &
Expressions

• Small Programming Assignment 2 and Large
Programming Assignment 1 will come out today

• I will be adjusting the timing of Small Programming
Assignment 3 - moving to later in the semester

• Quiz 1 is due Wednesday at 11:59 pm

• Heads up on Exam 1 is this Friday!

• We will review the format and content extensively in
the next class

2

Administrivia

1. Following up on If statements

2. Revisiting Ordering and Grouping of Expressions.

3

Today’s Agenda

Course Logistics

4

If Statements

• Conditions are setup in the if statement.

• Syntax example

5

The If Statement

if(num1 < num2)
 {
 printf("num1 is smaller than num2. \n");
 }else
 {
 printf("num2 is smaller than num1. \n");
 }

Condition

Statement Executed if
Condition is “true”

Statement Executed if
Condition is “false”

• Conditions are setup in the if statement.

• Syntax example

6

If Statement with One Alternative

if(num1 != num2)
 printf("num1 does not equal num2. \n");

7

Multiple Alternative if-else Statement

if(num1 != num2)
{
 printf("num1 and num2 don't have the same value!\n");
}else if(num1 < num2)
{
 printf("num1 is smaller than num2!\m");
}else
{
 printf("num1 is either bigger than num2 or they are exactly the same!\n");
}

Condition 1 Statement executed if
condition 1 is “true”

Condition 2

Statement executed if condition 1 is “false”
and condition 2 is “true”

Statement executed if both
condition 1 and condition 2

are “false”

Guess What!! You can include
control structures if you have

multiple statements that need to be
properly executed!!

8

Nested if Statements

• After testing and determining the outcome, it is
possible to dive into another condition.

• This is known as creating nested statements.

• Think about nesting dolls!

• Inside a nest doll is another doll. Inside a nest if
statement is another if statement.

if (num1 != 0)
 if(num1 !=1)
 if(num1!=2)
 if(num1!=3)
 printf("num is neither 0, 1, 2, or 3 ...");

Course Logistics

9

switch	Statements

10

switch Statement

• Some of the if	else statements can deal with checking
for an exact match.

• What would happen if there are lots of multiple-
alternative if-else statements that dealt with only
equality checks

• Switch Statement allows programmers to write a cleaner
version of if-else that only deals with == operator.

Q&A: Switch statements use relational operators for comparison?
a)True
b)False

11

switch Statement Syntax

switch(ticket)
{
 case 1:
 printf("Proceed to entrance 1.\n");
 break;

 case 2:
 printf("Proceed to entrance 2.\n");
 break;

 case 3:
 printf("Proceed to entrance 3.\n");
 break;

 default:
 printf("Sorry, your ticket does not match!");

}

variable being evaluated for equality

ticket	==	1

ticket	==2

ticket	==3

ticket	!=1	&&	ticket	!=2	&&	ticket	!=3

12

The Conditional Operator ?:

• C offers a quick simple way to write out an if-else
statement in one line of code.

 if(num1 < 0)
 {
 num2 = -num1;
 }
 else
 {
 num2 = num1;
 }

 num2 = (num1 < 0) ? -num1 : num1;

condition

true
false

Course Logistics

13

Revisiting Grouping & Expressions

Operator Precedence in C

14

Operator Precedence

function	calls Highest
!	+	-	&	(unary)	

operators)*	/	%
+	-

<	<=	>=	>
!=	==
&&
||
(=) Lowest

Operator Precedence in C

15

• Precedence determines how operators in C are
grouped together.

• When we were writing mathematical expressions in
C , we learned that “()” was how we grouped
certain operands together for an operator to perform
some sort of action.

• Example:

a + b
c + d

→ (a + b)/(c + d)

Logical Operator Precedence

16

• !, &&, || are the 3 logical operators in C we utilize

• A common misconception when we talk about precedence
with logical operators is who gets to be executed first.

• VERY DIFFERENT FROM ORDER OF OPERATIONS!!!

• When we discuss precedence, we are discussing how
logical operators group expressions together and what is
being evaluated.

Some Examples

17

• Assume A, B, C, and D are relation expressions (e.g.,
x	>	y)

• A	&&	B (A	&&	B)

• A	&&	B	||	C ((A&&B)	||	C)

• A	||	B	&&	C	||	D				 ((A	||	(B&&C))	||	D)

• !A				!(A)

General Advice

18

• It is good practice to use parenthesis to group
operands that you want evaluated by the operator.

• If you don’t use parenthesis, then you rely on C’s
precedence rules!

19

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

