
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 5 - Class 2:
Exam 1 Review

• Small Programming Assignment 2 and Large
Programming Assignment 1 will come out today

• I will be adjusting the timing of Small Programming
Assignment 3 - moving to later in the semester

• Quiz 1 is due Today at 11:59 pm

• Exam 1 is this Friday!

• We will review the format and content extensively
today.

2

Administrivia

• 2 Parts, In-class exam, closed book, 100 points total

• Part 1: Short Answer Questions

• 7-8 questions

• Either provide program output or answer with a code snippet or a few
short sentences.

• Part 2: Programming Questions

• 4-5 questions

• Either provide the output of a more complex program, or write several
lines of code

• Covers material from Weeks 1-5

• You will have the entire class period to complete the exam

• Please bring your UCF ID to the exam
3

Exam 1 Format

Course Logistics

4

Midterm Exam Review

Course Logistics

5

Week 1 - Class 2: C Language Elements

Anatomy of a C Program

6

• Every C Program basically consists of the following
parts:

• Preprocessor Commands

• Functions

• Variables

• Statements & Expressions

• Comments

#include <stdio.h>

int main()

We will cover next class!

printf("Hello World \n");

// main function -

// where the execution of program begins

• In a C program, the semicolon is a statement terminator

• Each individual statement must be ended with a semicolon, as it
indicates the end of a logical entity.

• However, whitespace does not matter (I will demonstrate).

7

Semicolons

• Comments allow programmers to make notes about their code,
and this is generally considered to be good practice.

• Code is often reused, updated, refactored, etc. Therefore, it is
important for the author of a certain piece of code to make sure the
intent is clear!

• In other words, it helps you to document the reason code was
written or document a solution to the problem that the code solves.

• It also allows future coders who work on a past project to see the
program intent.

• Syntax:

8

Comments

/* This comment has

many lines!!!*/

// This comment has one line

• Compilers completely ignore comments

• A C identifier is a name used to identify a variable, function, or any
other user-defined item.

• An identifier starts with a letter A to Z, a to z, or an underscore '_'
followed by zero or more letters, underscores, and digits (0 to 9).

• C does not allow punctuation characters such as @, $, and %
within identifiers.

• C is a case-sensitive programming language.

• Thus, Manpower and manpower are two different identifiers in C.

• It’s best to be consistent in your identifier scheme.

• in this class, to keep things simple, we will use CamelCase for
structs, and snake_case for everything else :-)

9

Identifiers

10

Anatomy of Hello World

// Simple C program to display "Hello World"

// Header file for input output functions

#include <stdio.h>

// main function -

// where the execution of program begins

int main()

{

 // prints hello world

 printf("Hello World \n");

 return 0;

}

Preprocessor Directive

• Provides information to the
preprocessor

• A preprocessor modifies a
c program prior to its
compilation

• stdio.h is the standard
input/output header file

• It contains pre-defined
functions that we can use!

11

Anatomy of Hello World

// Simple C program to display "Hello World"

// Header file for input output functions

#include <stdio.h>

// main function -

// where the execution of program begins

int main()

{

 // prints hello world

 printf("Hello World \n");

 return 0;

}

Main Function

• C programs always execute
instructions starting at the main
function from top to bottom.

• All c programs are required to
have a main function -
otherwise syntax error.

• The main function end with
return 0;

• This terminates the function
(and program) by sending the
value 0 back to the operating
system of the computer.

• Other values are used to
indicate errors and should not
be used!

12

Anatomy of Hello World

// Simple C program to display "Hello World"

// Header file for input output functions

#include <stdio.h>

// main function -

// where the execution of program begins

int main()

{

 // prints hello world

 printf("Hello World \n");

 return 0;

}

printf() Function

• This is a pre-defined
function from the
stdio.h library

• The function displays
information to the user
(and can also be useful
for debugging)

• It displays text on lines

• You have to specify the
newline character \n
to create a new line.

Course Logistics

13

Week 1 - Class 3: C Variables & Data Types

User-defined Identifiers

14

• We choose our own identifiers to name memory cells that will hold
data and program result and to name operations that we define.

• Rules for User-Defined Identifiers

• An identifier must consist only of letters, digits, and underscores.  

• An identifier cannot begin with a digit.  

• A C reserved word cannot be used as an identifier.  

• An identifier defined in a C standard library should not be redefined.  

• We will use CamelCase for structs, and snake_case for variables/
functions.

Variables

15

• Variables are names associated with a memory cell whose
value can change.

• User-Defined Identifiers

• Variable Declarations are statements that communicate to
the compiler the names of variables in the program and the
kind of information stored in each variable.

• Syntax

• int variable_list;

• double variable_list;

• char variable_list;

int	x	=	0	

double	num	=	1.4

char	letter	=	‘a’

A B C

0

1

2

3

4

Sample Syntax for Declaring Variables

16

int val;

double x;

float y;

char letter;

Data Types

17

• A set of values and operations that can be performed on those values.

• Types of Data that can be stored in C:

1. int – integer numbers

2. double – decimal numbers

3. float – similar to double BUT different amount of allocation for
memory storage (smaller allocation)

4. char	- a character from the keyboard

Type Range in Typical Implementation

int -2,147,483,647 ... 2,147,483,647

double 10-307...10308 (15 significant digits)

float 10-37...1038 (6 significant digits)

double and float Data Types

18

• Most beginners think that doubles and floats can be
used interchangeably.

• THIS IS FALSE!!!

• doubles have twice the precision of float type values.

• If they are used interchangeably, then you will likely
encounter rounding errors.

• When in doubt, always use double for extra
precision!!!!! If any programming problem does not
specify the data type for any real number, use double!!!

char Data Type

19

• Data type char represents an
individual character value: letter,
digit, or a special symbol

• Ex: ‘A’, ‘z’, ‘2’, ‘9’, ‘*’, ‘:’, ‘”’, ‘ ’

• Characters are represented
uniquely in memory as an integer
for the system to properly evaluate.

• The value is known as ASCII
Value

• This can be utilized when
comparing characters.

Character ASCII Code

’	‘ 32

*’ 42

‘A’ 65

‘B’ 66

‘Z’ 90

‘a’ 97

‘b’ 98

‘z’ 122

‘0’ 48

‘9’ 57

Printing Variables

20

Format
Specifier

Data
Type description Syntax

%d int To print the integer value printf("%d",<int_variable>);

%f float To print the floating number printf("%f",<float_variable>);

%lf double To print the double precision
floating number or long float

printf("%lf",<double_variable>);

%c char To print the character value printf("%c",<char_variable>);

Course Logistics

21

Week 2 - Class 1: Executable Statements

Assignment Statements

22

• Assignment statements stores a value or a
computational result in a variable and is used to
perform most arithmetic operations in a
program.

• = is called the assignment operator  

• Syntax:

• variable	=	expression;

int var;

var = 32;

Compound Assignment Statements

23

• In C, you can create compound assignment
statements in the form of:

sum = sum + var;

Yes! You are seeing double! Let’s take a look at what is happening in a statement like this!

Printing Special Characters

24

Escape Sequence Meaning
\a
 Alert

\b Backspace

\n Newline

\t Horizontal	Tab

\v Vertical	Tab

\\ Backslash

\’ Single	Quote

\” Double	Quote

\? Question	Mark

%% Percent	Symbol

Accepting User Input with scanf()

25

• Copies data into a variable stored in memory

• Collects user input through the keyboard and stores
the value into the respective address of the variable
in memory

scanf("%d", &var);

function name placeholder with

data type delimiter

reference to

memory address

of the var variable

Example scanf()

26

// Header file for input output functions

#include <stdio.h>

// main function -

// where the execution of program begins

int main()

{

int num;

int var;

int val;

printf("Enter 3 values");

scanf("%d", &num);

scanf("%d", &var);

scanf("%d", &val);

printf("%d, %d, %d", num, var, val);

 return 0;

}

Example scanf()

27

// Header file for input output functions

#include <stdio.h>

// main function -

// where the execution of program begins

int main()

{

int num;

int var;

int val;

printf("Enter 3 values");

scanf(“%d%d%d”, &num, &var, &val);

printf("%d, %d, %d", num, var, val);

 return 0;

}

Return Statements

28

• Return terminates the function and transfers control
from a function back to the activator of the function.
For the main function, the control is transferred
back to the operating system.

• A value is sent back to the operating system. 
• 0 means code executed successfully 
• 1 means code executed with run time error (code
crash).

return 0; // function terminator

Constant Macro

29

• A name that is replaced by a particular constant
value before program is sent to compiler

• Always seen at the top of a program file.

• Syntax:

#define MILES PER KM 0.62137

Course Logistics

30

Week 2 - Class 3: Arithmetic Expressions & Library Functions

Modulus Operator

31

• You may not have heard about the modulus operator (remainder
operator).

• The modulus operator returns the remainder value of a division
result.

• Example: would result with the remainder 1

• The symbol denoted in C uses % to represent the modulus
operator.

• In mathematics (such as discrete mathematics) the notation
mod also represents the modulus operator. In this course, we
will only use the notation %.

4
3

int result = 4 & 3;

printf ("4 & 3 = %d\n”, result);

Arithmetic Expressions

32

Arithmetic Operator Meaning Examples
+ addition 5	+	2	=	7

5.0	+	2.0	=	7.0

- subtraction 5	-	2	=	3

5.0	-	2.0	=	3.0

* multiplication 5	*	2	=	10

5.0	*	2.0	=	10.0

/ division 5.0	/	2.0	=	2.5

5	/	2	=	2

% remainder 5	%	2	=	1

• Casting is converting an expression to a
different type by writing the desired type in
parentheses in front of the expression.

Casting

33

double n;

double x = 0.5;

n = (int)(9 * 0.5); //casting

What value does n hold?
a) 4

b) 4.0

c) 4.5

d) 5

Writing Mathematical Formulas in C

34

Mathematical Formula C Expression

b2 - 4ac

a + b - c

a * -(b+c)

b * b - 4 * a * c;

a + b - c;

a + b
c + d

1 / (1 + x * x);1
1 + x2

1 / (1 + x * x);

a * - (b + c);

Formatting Output

35

• C allows you to format output of numbers for
consistency.

• You can control the number of spaces

• Text automatically aligns to the right

int val = 234;

printf("%d\n", val);

printf("%4d\n", val);

printf("%5d\n", val);

printf("%6d\n", val);

printf("%1d\n", val);

Code File Output

The Math Library

36

• The C language has a math library with
predefined functions that perform certain
mathematical tasks.

• Task Examples: square root, Trigonometry, etc…

• #include	<math.h> imports all reusable math
functions

Math Library Functions

37

Function Header File Purpose Argument(s) Result
abs(x)
 <stdlib.h> Absolute Value
 int
 int

ceil(x) <math.h> Round Up double double

cos(x) <math.h> Cosine double	(radians) double

exp(x) <math.h> Natural Exponent double double

floor(x) <math.h> Round Down double double

log(x) <math.h> Natural Logarithm double double

log10(x) <math.h> Base 10 Logarithm
 double double

pow(x,y) <math.h> xy double double

sin(x) <math.h> Sine double double

sqrt(x) <math.h> Square Root
 double double

tan(x) <math.h> Tangent double double

Class Demo

38

• Write a program that computes the quadratic
function.

• This is defined as follows:

x =
−b ± b2 − 4ac

2a

• We know that functions return a value

• What does scanf() return?

Revisiting the scanf() Function

39

#include <stdio.h>

int main()

{

 int var1;

 double var2;

 int var3;

 printf("Enter 3 values:");

 int result = scanf("%d%lf%d", &var1, &var2, &var3);

 printf("result = %d\n", result);

 printf("Enter 2 values:");

 result = scanf("%d%d", &var1, &var3);

 printf("result = %d\n", result);

 return 0;

}

Course Logistics

40

Week 3 - Class 1: User-defined Functions

User-defined Functions

41

• One way that programmers implement top-
down design is defining their own functions
(user defined functions)

• User defined functions are sets of instructions
that are defined by the programmer

• Programmers will break down a larger problem
into subproblems and will solve these
subproblems in user-defined functions

• In order to invoke the function, you must call it

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");

 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()

{

 printf("This is my awesome function!!!\n");

}

Function Prototypes

42

• Just like variables, functions must be declared as well.

• Prototypes allows the Operating System know how
much memory space needs to be reserved based on
the return type and arguments.

Function

Prototype

Function Definitions

43

• Just like declaring a variable, you must assign it a value.

• For function definitions, you must write out the set of
instructions to perform the task that needs to be written
out.

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");

 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()

{

 printf("This is my awesome function!!!\n");

}

Function

Definition

Types of Functions

44

• There are two types of functions.

• Functions that return a value.

• Functions that don’t return a value.

• These types of functions are defined through their
prototypes.

• Functions that don’t return a value have the reserved
word void in front of the name.

• Functions that do return a value have the type of
data (int, double, char) in front of the of the name.

Course Logistics

45

Week 3 - Class 1I: User-defined Functions II

Functions with Arguments/Parameters

46

#include<stdio.h>

int mySecretForumla (int num, int num2, int num3);

int main ()

{

 int num1 = 3;

 int num2 = 2;

 int num3 = 1;

int x = mySecretForumla (num1,num2, num3) ;

printf ("x = 8d\n", x);

return 0;

}

int mySecretForumla (int num1, int num2, int num3)

{

int result = num1 + num2 * num3 - num3;

return result;

}

Parameters

Arguments

Pass By Value

47

• Whenever a function with arguments is called,
they must share the values properly.

• One way of doing this is pass by value.

• Pass by value is when a value stored in memory
(stack space) is copied and sent over to the
proper parameter of the respective function
(which is also stored in a different location of the
stack space).

• The following set of slides shows a
demonstration.

Course Logistics

48

Week 4 - Class 1: Control Structures & Conditionals

• Control structures are a combination of
individual instructions into a single logical unit
with one entry point and one exit point

• Compound Statement is a group of statements
bracketed {	and	} that are executed
sequentially.

Control Structures

49

int main(void)

{

 printf("Hello World \n");

 return 0;

}

int main(void)

{

 return 0;

}

Variable Scope

50

• Now that we have learned control structures, it is time to discuss variable
scope.

• Scope is the level of access a variable has in a program run

• There are two types of scopes with variables.

• Global Scope (Bad!!!!!)

• Local Score (Good!!!)

• Global means all components (functions have access to the value and can
manipulate it)

• Why is that bad?

• Never use Global Variables in this course unless Dr. Moran says it is ok

• Local means only the component within the control structure has access
the value and can perform certain operations on it.  
• Good Practice!!!

Relational & Equality Operators

51

• When evaluating expressions, we make comparisons.

• There are 6 relational/equality operators.

• Less than (<)

• Greater than (>)

• Less than or equal to (<=)

• Greater than or equal to (>=)

• Equal to (==)

• Not Equal to (!=)

• Important! = and == are two different operators!!

• = is the assignment operator

• == is the equality operator

Relational & Equality Operators in C

52

Operator Meaning Type

< less than relational

> greater than relational

<= less than or equal to relational

>= greater than or equal to relational

(==) equal to equality

!= not equal to equality

Logical Operators

53

• An expression that uses one or more of the three logical
operators

• && (and)

• || (or)

• ! (not)

• && and || operators allows us to combine a set of conditions

• Examples:

• in_range	=	(num	>=	-10	&&	num	<=	10)

• is_letter	=	(letter	==	‘a’	||	letter	==	‘b’)	

• ! operator complements (opposite result) the condition

• Examples:

• num1	==	num2

• !(num1	==	num2)	

Logical Tables

54

Operand 1 Operand 2 Operand 1 && Operand 2

nonzero (T) nonzero (T) 1 (T)

nonzero (T) 0 (F) 0 (F)

0 (F) nonzero (T) 0 (F)

0 (F) 0 (F) 0 (F)

Operand 1 Operand 2 Operand 1 && Operand 2

nonzero (T) nonzero (T) 1 (T)

nonzero (T) 0 (F) 1 (T)

0 (F) nonzero (T) 1 (T)

0 (F) 0 (F) 0 (F)

Operand 1 ! Operand 1

nonzero (T) 0 (F)

0 (F) 1 (T)

The && Operator

The || Operator

The ! Operator

Operator Precedence in C

55

Operator Precedence

function	calls Highest
!	+	-	&	(unary)	

operators)*	/	%
+	-

<	<=	>=	>
!=	==
&&
||
(=) Lowest

Course Logistics

56

Week 4 - Class 1I: If Statements

• Conditions are setup in the if statement.

• Syntax example

57

The If Statement

if(num1 < num2)

 {

 printf("num1 is smaller than num2. \n");

 }else

 {

 printf("num2 is smaller than num1. \n");

 }

Condition

Statement Executed if

Condition is “true”

Statement Executed if

Condition is “false”

• Conditions are setup in the if statement.

• Syntax example

58

If Statement with One Alternative

if(num1 != num2)

 printf("num1 does not equal num2. \n");

Q&A: What happens if the condition is false?

a) Program crashes at runtime

b) Program does not execute the printf statement

c) Program won’t compile

d) None of the above

59

Compound If Statement Example #1

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0

#include <stdio.h>

int main(void)

{

 int num1;

 int num2;

 scanf("%d%d", &num1, &num2);

 if(num1 != num2)

 {

 printf("num1 is smaller than num2. \n");

 printf("Still in the true block. \n");

 }else

 {

 printf("num2 is smaller than num1. \n");

 printf("Still in the false block. \n");

 }

 printf("I will always be displayed! \n");

 return 0;

}

Here

60

Multiple Alternative if-else Statement

if(num1 != num2)

{

 printf("num1 and num2 don't have the same value!\n");

}else if(num1 < num2)

{

 printf("num1 is smaller than num2!\m");

}else

{

 printf("num1 is either bigger than num2 or they are exactly the same!\n");

}

Condition 1 Statement executed if

condition 1 is “true”

Condition 2

Statement executed if condition 1 is “false”

and condition 2 is “true”

Statement executed if both

condition 1 and condition 2

are “false”

61

Nested if Statements

• After testing and determining the outcome, it is
possible to dive into another condition.

• This is known as creating nested statements.

• Think about nesting dolls!

• Inside a nest doll is another doll. Inside a nest if
statement is another if statement.

if (num1 != 0)

 if(num1 !=1)

 if(num1!=2)

 if(num1!=3)

 printf("num is neither 0, 1, 2, or 3 ...");

62

switch Statement

• Some of the if	else statements can deal with checking
for an exact match.

• What would happen if there are lots of multiple-
alternative if-else statements that dealt with only
equality checks

• Switch Statement allows programmers to write a cleaner
version of if-else that only deals with == operator.

Q&A: Switch statements use relational operators for comparison?

a)True

b)False

63

switch Statement Syntax

switch(ticket)

{

 case 1:

 printf("Proceed to entrance 1.\n");

 break;

 case 2:

 printf("Proceed to entrance 2.\n");

 break;

 case 3:

 printf("Proceed to entrance 3.\n");

 break;

 default:

 printf("Sorry, your ticket does not match!");

}

variable being evaluated for equality

ticket	==	1

ticket	==2

ticket	==3

ticket	!=1	&&	ticket	!=2	&&	ticket	!=3

Course Logistics

64

Week 5- Class 1: Grouping Expressions

Operator Precedence in C

65

• Precedence determines how operators in C are
grouped together.

• When we were writing mathematical expressions in
C , we learned that “()” was how we grouped
certain operands together for an operator to perform
some sort of action.

• Example:

a + b
c + d

→ (a + b)/(c + d)

Logical Operator Precedence

66

• !, &&, || are the 3 logical operators in C we utilize

• A common misconception when we talk about precedence
with logical operators is who gets to be executed first.

• VERY DIFFERENT FROM ORDER OF OPERATIONS!!!

• When we discuss precedence, we are discussing how
logical operators group expressions together and what is
being evaluated.

int main(void) {

 int a = 0, b = 0, c = 0;

 ++a || ++b && ++c;

 printf("%d %d %d", a, b, c);

 return 0;

}

Logical Operator Precedence

67

int main(void) {

 int a = 0, b = 0, c = 0;

 ++a || ++b && ++c;

 printf("%d %d %d", a, b, c);

 return 0;

}

What is the output?

Operator Precedence in C

68

Operator Precedence

function	calls Highest
!	+	-	&	(unary)	

operators)*	/	%
+	-

<	<=	>=	>
!=	==
&&
||
(=) Lowest

Some Examples

69

• Assume A, B, C, and D are relation expressions (e.g.,
x	>	y)

• A	&&	B (A	&&	B)

• A	&&	B	||	C ((A&&B)	||	C)

• A	||	B	&&	C	||	D				 ((A	||	(B&&C))	||	D)

• !A				!(A)

70

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

