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• Small Programming Assignment 2 and Large 
Programming Assignment 1 will come out today


• I will be adjusting the timing of Small Programming 
Assignment 3 - moving to later in the semester


• Quiz 1 is due Today at 11:59 pm


• Exam 1 is this Friday!


• We will review the format and content extensively 
today.
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Administrivia



• 2 Parts, In-class exam, closed book, 100 points total


• Part 1: Short Answer Questions


• 7-8 questions


• Either provide program output or answer with a code snippet or a few 
short sentences.


• Part 2: Programming Questions 


• 4-5 questions


• Either provide the output of a more complex program, or write several 
lines of code


• Covers material from Weeks 1-5


• You will have the entire class period to complete the exam


• Please bring your UCF ID to the exam
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Exam 1 Format



Course Logistics
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Midterm Exam Review



Course Logistics
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Week 1 - Class 2: C Language Elements



Anatomy of a C Program
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• Every C Program basically consists of the following 
parts:


• Preprocessor Commands


• Functions


• Variables


• Statements & Expressions


• Comments

#include <stdio.h>

int main()

We will cover next class!

printf("Hello World \n");

// main function -

// where the execution of program begins



• In a C program, the semicolon is a statement terminator


• Each individual statement must be ended with a semicolon, as it 
indicates the end of a logical entity.


• However, whitespace does not matter (I will demonstrate).
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Semicolons



• Comments allow programmers to make notes about their code, 
and this is generally considered to be good practice.


• Code is often reused, updated, refactored, etc. Therefore, it is 
important for the author of a certain piece of code to make sure the 
intent is clear!


• In other words, it helps you to document the reason code was 
written or document a solution to the problem that the code solves.


• It also allows future coders who work on a past project to see the 
program intent.


• Syntax:
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Comments

/* This comment has 

many lines!!!*/


// This comment has one line


• Compilers completely ignore comments



• A C identifier is a name used to identify a variable, function, or any 
other user-defined item.


• An identifier starts with a letter A to Z, a to z, or an underscore '_' 
followed by zero or more letters, underscores, and digits (0 to 9).


• C does not allow punctuation characters such as @, $, and % 
within identifiers. 


• C is a case-sensitive programming language. 


• Thus, Manpower and manpower are two different identifiers in C.


• It’s best to be consistent in your identifier scheme.


•  in this class, to keep things simple, we will use CamelCase for 
structs, and snake_case for everything else :-)
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Identifiers
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Anatomy of Hello World

// Simple C program to display "Hello World"


// Header file for input output functions

#include <stdio.h>


// main function -

// where the execution of program begins

int main()

{

    // prints hello world

    printf("Hello World \n");


    return 0;

}


Preprocessor Directive

• Provides information to the 
preprocessor


• A preprocessor modifies a 
c program prior to its 
compilation


• stdio.h is the standard 
input/output header file


• It contains pre-defined 
functions that we can use!
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Anatomy of Hello World

// Simple C program to display "Hello World"


// Header file for input output functions

#include <stdio.h>


// main function -

// where the execution of program begins

int main()

{

    // prints hello world

    printf("Hello World \n");


    return 0;

}


Main Function

• C programs always execute 
instructions starting at the main 
function from top to bottom.


• All c programs are required to 
have a main function - 
otherwise syntax error. 

• The main function end with 
return 0;


• This terminates the function 
(and program) by sending the 
value 0 back to the operating 
system of the computer.


• Other values are used to 
indicate errors and should not 
be used!
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Anatomy of Hello World

// Simple C program to display "Hello World"


// Header file for input output functions

#include <stdio.h>


// main function -

// where the execution of program begins

int main()

{

    // prints hello world

    printf("Hello World \n");


    return 0;

}


printf() Function

• This is a pre-defined 
function from the 
stdio.h library


• The function displays 
information to the user 
(and can also be useful 
for debugging)


• It displays text on lines


• You have to specify the 
newline character \n 
to create a new line.



Course Logistics
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Week 1 - Class 3: C Variables & Data Types



User-defined Identifiers
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• We choose our own identifiers to name memory cells that will hold 
data and program result and to name operations that we define. 


• Rules for User-Defined Identifiers 


• An identifier must consist only of letters, digits, and underscores.  

• An identifier cannot begin with a digit.  

• A C reserved word cannot be used as an identifier.  

• An identifier defined in a C standard library should not be redefined.  

• We will use CamelCase for structs, and snake_case for variables/
functions.



Variables
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• Variables are names associated with a memory cell whose 
value can change. 


• User-Defined Identifiers 


• Variable Declarations are statements that communicate to 
the compiler the names of variables in the program and the 
kind of information stored in each variable. 


• Syntax


• int variable_list;


• double variable_list;


• char variable_list;

int	x	=	0	

double	num	=	1.4

char	letter	=	‘a’

A B C

0

1

2

3

4



Sample Syntax for Declaring Variables
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int val;


double x;


float y;


char letter;




Data Types
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• A set of values and operations that can be performed on those values. 


• Types of Data that can be stored in C: 


1. int – integer numbers 


2. double – decimal numbers 


3. float – similar to double BUT different amount of allocation for 
memory storage (smaller allocation) 


4. char	- a character from the keyboard

Type Range in Typical Implementation

int -2,147,483,647 ... 2,147,483,647 

double 10-307...10308 (15 significant digits) 


float 10-37...1038 (6 significant digits) 




double and float Data Types
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• Most beginners think that doubles and floats can be 
used interchangeably. 


• THIS IS FALSE!!! 


• doubles have twice the precision of float type values. 


• If they are used interchangeably, then you will likely 
encounter rounding errors. 


• When in doubt, always use double for extra 
precision!!!!! If any programming problem does not 
specify the data type for any real number, use double!!!



char Data Type

19

• Data type char represents an 
individual character value: letter, 
digit, or a special symbol 


• Ex: ‘A’, ‘z’, ‘2’, ‘9’, ‘*’, ‘:’, ‘”’, ‘ ’ 


• Characters are represented 
uniquely in memory as an integer 
for the system to properly evaluate. 


•  The value is known as ASCII 
Value


• This can be utilized when 
comparing characters.

Character ASCII Code

’	‘ 32

*’ 42

‘A’ 65

‘B’ 66

‘Z’ 90

‘a’ 97

‘b’ 98

‘z’ 122

‘0’ 48

‘9’ 57



Printing Variables
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Format 
Specifier

Data 
Type description Syntax

%d int To print the integer value printf("%d",<int_variable>);

%f float To print the floating number printf("%f",<float_variable>);

%lf double To print the double precision 
floating number or long float

printf("%lf",<double_variable>);

%c char To print the character value printf("%c",<char_variable>);



Course Logistics
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Week 2 - Class 1: Executable Statements



Assignment Statements
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• Assignment statements stores a value or a 
computational result in a variable and is used to 
perform most arithmetic operations in a 
program. 


• = is called the assignment operator  

• Syntax:

• variable	=	expression;

int var;

var = 32;



Compound Assignment Statements
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• In C, you can create compound assignment 
statements in the form of:

sum = sum + var;

Yes! You are seeing double! Let’s take a look at what is happening in a statement like this!



Printing Special Characters
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Escape Sequence Meaning
\a
 Alert

\b Backspace


\n Newline

\t Horizontal	Tab

\v Vertical	Tab

\\ Backslash

\’ Single	Quote

\” Double	Quote

\? Question	Mark

%% Percent	Symbol



Accepting User Input with scanf()
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• Copies data into a variable stored in memory 


• Collects user input through the keyboard and stores 
the value into the respective address of the variable 
in memory

scanf("%d", &var);

function name placeholder with

data type delimiter

reference to 

memory address


of the var variable



Example scanf()
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// Header file for input output functions

#include <stdio.h>


// main function -

// where the execution of program begins

int main()

{


int num;

int var;

int val;

printf("Enter 3 values");


scanf("%d", &num);

scanf("%d", &var);

scanf("%d", &val);


printf("%d, %d, %d", num, var, val);


    return 0;

}




Example scanf()
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// Header file for input output functions

#include <stdio.h>


// main function -

// where the execution of program begins

int main()

{


int num;

int var;

int val;

printf("Enter 3 values");


scanf(“%d%d%d”, &num, &var, &val);


printf("%d, %d, %d", num, var, val);


    return 0;

}




Return Statements
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• Return terminates the function and transfers control 
from a function back to the activator of the function. 
For the main function, the control is transferred 
back to the operating system. 


• A value is sent back to the operating system. 
• 0 means code executed successfully 
• 1 means code executed with run time error (code 
crash).

return 0; // function terminator



Constant Macro
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• A name that is replaced by a particular constant 
value before program is sent to compiler 


• Always seen at the top of a program file.


• Syntax:

#define MILES PER KM 0.62137



Course Logistics
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Week 2 - Class 3: Arithmetic Expressions & Library Functions



Modulus Operator
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• You may not have heard about the modulus operator (remainder 
operator).


• The modulus operator returns the remainder value of a division 
result.


• Example:  would result with the remainder 1


• The symbol denoted in C uses % to represent the modulus 
operator.


• In mathematics (such as discrete mathematics) the notation 
mod also represents the modulus operator. In this course, we 
will only use the notation %.

4
3

int result = 4 & 3;

printf ("4 & 3 = %d\n”, result);



Arithmetic Expressions
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Arithmetic Operator Meaning Examples
+ addition 5	+	2	=	7


5.0	+	2.0	=	7.0

- subtraction 5	-	2	=	3

5.0	-	2.0	=	3.0

* multiplication 5	*	2	=	10


5.0	*	2.0	=	10.0

/ division 5.0	/	2.0	=	2.5

5	/	2	=	2

% remainder 5	%	2	=	1



• Casting is converting an expression to a 
different type by writing the desired type in 
parentheses in front of the expression.

Casting
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double n;

double x = 0.5;


n = (int)(9 * 0.5); //casting

What value does n hold?
a) 4

b) 4.0

c) 4.5

d) 5



Writing Mathematical Formulas in C
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Mathematical Formula C Expression

b2 - 4ac

a + b - c

a * -(b+c)

b * b - 4 * a * c;

a + b - c;

a + b
c + d

1 / (1 + x * x);1
1 + x2

1 / (1 + x * x);

a * - (b + c);



Formatting Output
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• C allows you to format output of numbers for 
consistency.


• You can control the number of spaces


• Text automatically aligns to the right

int val = 234;

printf("%d\n", val);

printf("%4d\n", val);

printf("%5d\n", val);

printf("%6d\n", val);

printf("%1d\n", val);

Code File Output



The Math Library
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• The C language has a math library with 
predefined functions that perform certain 
mathematical tasks.


• Task Examples: square root, Trigonometry, etc…


• #include	<math.h> imports all reusable math 
functions



Math Library Functions
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Function Header File Purpose Argument(s) Result
abs(x)
 <stdlib.h> Absolute Value
 int
 int


ceil(x) <math.h> Round Up double double

cos(x) <math.h> Cosine double	(radians) double

exp(x) <math.h> Natural Exponent double double

floor(x) <math.h> Round Down double double

log(x) <math.h> Natural Logarithm double double

log10(x) <math.h> Base 10 Logarithm
 double double

pow(x,y) <math.h> xy double double

sin(x) <math.h> Sine double double

sqrt(x) <math.h> Square Root
 double double

tan(x) <math.h> Tangent double double



Class Demo

38

• Write a program that computes the quadratic 
function. 


• This is defined as follows:

x =
−b ± b2 − 4ac

2a



• We know that functions return a value


• What does scanf() return?

Revisiting the scanf() Function
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#include <stdio.h>


int main()

{

    int var1;

    double var2;

    int var3;


    printf("Enter 3 values:");

    int result = scanf("%d%lf%d", &var1, &var2, &var3);

    printf("result = %d\n", result);


    printf("Enter 2 values:");

    result = scanf("%d%d", &var1, &var3);

    printf("result = %d\n", result);


    return 0;

}




Course Logistics
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Week 3 - Class 1: User-defined Functions



User-defined Functions

41

• One way that programmers implement top-
down design is defining their own functions 
(user defined functions)


• User defined functions are sets of instructions 
that are defined by the programmer


• Programmers will break down a larger problem 
into subproblems and will solve these 
subproblems in user-defined functions


• In order to invoke the function, you must call it



#include <stdio.h>


void myOwnFunction();


int main() {


    printf("About to call my function!!!\n");

    myOwnFunction(); // Function call statement


return 0;


}


void myOwnFunction()

{

    printf("This is my awesome function!!!\n");

}


Function Prototypes
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• Just like variables, functions must be declared as well. 


• Prototypes allows the Operating System know how 
much memory space needs to be reserved based on 
the return type and arguments.

Function 

Prototype



Function Definitions
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• Just like declaring a variable, you must assign it a value. 


• For function definitions, you must write out the set of 
instructions to perform the task that needs to be written 
out.

#include <stdio.h>


void myOwnFunction();


int main() {


    printf("About to call my function!!!\n");

    myOwnFunction(); // Function call statement


return 0;


}


void myOwnFunction()

{

    printf("This is my awesome function!!!\n");

}


Function 

Definition



Types of Functions
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• There are two types of functions.


• Functions that return a value.


• Functions that don’t return a value. 


• These types of functions are defined through their 
prototypes. 


• Functions that don’t return a value have the reserved 
word void in front of the name. 


• Functions that do return a value have the type of 
data (int, double, char) in front of the of the name.



Course Logistics
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Week 3 - Class 1I: User-defined Functions II



Functions with Arguments/Parameters
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#include<stdio.h>


int mySecretForumla (int num, int num2, int num3);

int main ()

{

    int num1 = 3;

    int num2 = 2;

    int num3 = 1;


int x = mySecretForumla (num1,num2, num3) ;


printf ("x = 8d\n", x);


return 0;


}


int mySecretForumla (int num1, int num2, int num3)

{

int result = num1 + num2 * num3 - num3;

return result;

}


Parameters

Arguments



Pass By Value
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• Whenever a function with arguments is called, 
they must share the values properly. 


• One way of doing this is pass by value. 


• Pass by value is when a value stored in memory 
(stack space) is copied and sent over to the 
proper parameter of the respective function 
(which is also stored in a different location of the 
stack space). 


• The following set of slides shows a 
demonstration.



Course Logistics
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Week 4 - Class 1: Control Structures & Conditionals



• Control structures are a combination of 
individual instructions into a single logical unit 
with one entry point and one exit point 


• Compound Statement is a group of statements 
bracketed {	and	} that are executed 
sequentially.

Control Structures

49

int main(void)

{


    printf("Hello World \n");

    return 0;

}


int main(void)

{

    return 0;

}




Variable Scope
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• Now that we have learned control structures, it is time to discuss variable 
scope. 


• Scope is the level of access a variable has in a program run 


• There are two types of scopes with variables.


• Global Scope (Bad!!!!!)


• Local Score (Good!!!) 


• Global means all components (functions have access to the value and can 
manipulate it) 


• Why is that bad?


• Never use Global Variables in this course unless Dr. Moran says it is ok 


• Local means only the component within the control structure has access 
the value and can perform certain operations on it.  
• Good Practice!!!



Relational & Equality Operators
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• When evaluating expressions, we make comparisons. 


• There are 6 relational/equality operators.


• Less than (<)


• Greater than (>)


• Less than or equal to (<=) 


• Greater than or equal to (>=)


• Equal to (==)


• Not Equal to (!=) 


• Important! = and == are two different operators!!


• = is the assignment operator


• == is the equality operator 



Relational & Equality Operators in C
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Operator Meaning Type

< less than relational

> greater than relational

<= less than or equal to relational

>= greater than or equal to relational

(==) equal to equality

!= not equal to equality



Logical Operators
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• An expression that uses one or more of the three logical 
operators 


• && (and) 


• || (or) 


• ! (not) 


• && and || operators allows us to combine a set of conditions 


• Examples:

• in_range	=	(num	>=	-10	&&	num	<=	10)


• is_letter	=	(letter	==	‘a’	||	letter	==	‘b’)	


• ! operator complements (opposite result) the condition 


• Examples:

• num1	==	num2


• !(num1	==	num2)	



Logical Tables
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Operand 1 Operand 2 Operand 1 && Operand 2

nonzero (T) nonzero (T) 1 (T)

nonzero (T) 0 (F) 0 (F)

0 (F) nonzero (T) 0 (F)

0 (F) 0 (F) 0 (F)

Operand 1 Operand 2 Operand 1 && Operand 2

nonzero (T) nonzero (T) 1 (T)

nonzero (T) 0 (F) 1 (T)

0 (F) nonzero (T) 1 (T)

0 (F) 0 (F) 0 (F)

Operand 1 ! Operand 1

nonzero (T) 0 (F)

0 (F) 1 (T)

The && Operator

The || Operator

The ! Operator



Operator Precedence in C
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Operator Precedence

function	calls Highest
!	+	-	&	(unary)	

operators)*	/	%
+	-

<	<=	>=	>
!=	==
&&
||
(=) Lowest



Course Logistics
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Week 4 - Class 1I: If Statements



• Conditions are setup in the if statement. 


• Syntax example

57

The If Statement

if(num1 < num2)

    {

        printf("num1 is smaller than num2. \n");

    }else

    {

        printf("num2 is smaller than num1. \n");

    }

Condition

Statement Executed if 

Condition is “true”

Statement Executed if 

Condition is “false”



• Conditions are setup in the if statement. 


• Syntax example
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If Statement with One Alternative

if(num1 != num2)

        printf("num1 does not equal num2. \n");


Q&A: What happens if the condition is false?


a) Program crashes at runtime

b) Program does not execute the printf statement

c) Program won’t compile

d) None of the above
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Compound If Statement Example #1

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0

#include <stdio.h>

 

int main(void)

{

    int num1;

    int num2;

    


 scanf("%d%d", &num1, &num2);


    if(num1 != num2)

    {

        printf("num1 is smaller than num2. \n");

        printf("Still in the true block. \n");

    }else

    {

        printf("num2 is smaller than num1. \n");

        printf("Still in the false block. \n");

    }


    printf("I will always be displayed! \n");


    return 0;


}


Here
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Multiple Alternative if-else Statement

if(num1 != num2)

{

    printf("num1 and num2 don't have the same value!\n");

}else if(num1 < num2)

{

    printf("num1 is smaller than num2!\m");

}else

{

    printf("num1 is either bigger than num2 or they are exactly the same!\n");

}


Condition 1 Statement executed if 

condition 1 is “true”

Condition 2

Statement executed if condition 1 is “false” 

and condition 2  is “true”

Statement executed if both

condition 1 and condition 2


are “false”
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Nested if Statements

• After testing and determining the outcome, it is 
possible to dive into another condition. 


• This is known as creating nested statements.


• Think about nesting dolls! 


• Inside a nest doll is another doll. Inside a nest if 
statement is another if statement. 

if (num1 != 0)

    if(num1 !=1)

        if(num1!=2)

            if(num1!=3)

                printf("num is neither 0, 1, 2, or 3 ...");
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switch Statement

• Some of the if	else statements can deal with checking 
for an exact match. 


• What would happen if there are lots of multiple-
alternative if-else statements that dealt with only 
equality checks


• Switch Statement allows programmers to write a cleaner 
version of if-else that only deals with == operator.

Q&A: Switch statements use relational operators for comparison?

a)True

b)False
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switch Statement Syntax

switch(ticket)

{

    case 1:

        printf("Proceed to entrance 1.\n");

        break;

    

    case 2:

        printf("Proceed to entrance 2.\n");

        break;


    case 3:

        printf("Proceed to entrance 3.\n");

        break;


    default:

        printf("Sorry, your ticket does not match!");


}


variable being evaluated for equality

ticket	==	1

ticket	==2

ticket	==3

ticket	!=1	&&	ticket	!=2	&&	ticket	!=3



Course Logistics
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Week 5- Class 1: Grouping Expressions



Operator Precedence in C
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• Precedence determines how operators in C are 
grouped together. 


• When we were writing mathematical expressions in 
C , we learned that “()” was how we grouped 
certain operands together for an operator to perform 
some sort of action. 


• Example:

a + b
c + d

→ (a + b)/(c + d)



Logical Operator Precedence
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• !, &&, || are the 3 logical operators in C we utilize 


• A common misconception when we talk about precedence 
with logical operators is who gets to be executed first. 


• VERY DIFFERENT FROM ORDER OF OPERATIONS!!! 


• When we discuss precedence, we are discussing how 
logical operators group expressions together and what is 
being evaluated. 

int main(void) {

    int a = 0, b = 0, c = 0;

    ++a || ++b && ++c;

    printf("%d %d %d", a, b, c);

    return 0;

}




Logical Operator Precedence
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int main(void) {

    int a = 0, b = 0, c = 0;

    ++a || ++b && ++c;

    printf("%d %d %d", a, b, c);

    return 0;

}


What is the output?



Operator Precedence in C
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Operator Precedence

function	calls Highest
!	+	-	&	(unary)	

operators)*	/	%
+	-

<	<=	>=	>
!=	==
&&
||
(=) Lowest



Some Examples
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• Assume A, B, C, and D are relation expressions (e.g., 
x	>	y)


• A	&&	B       (A	&&	B)


• A	&&	B	||	C       ((A&&B)	||	C)


• A	||	B	&&	C	||	D				 ((A	||	(B&&C))	||	D)


• !A				!(A)
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