
COP 3223H:
Introduction to
C Programming

Dr. Kevin Moran

University of
Central Florida

Fall 2023

Week 4 - Class 1:
Control Structures

& Conditionals

Administrivia

2

• Small Programming Assignment 2 will come out later
this week (Thurs/Fri)

• I will be adjusting the timing of Small Programming
Assignment 3 - moving to after Large programming
assignment 1

• Quiz 5 will be due by Sunday at 11:59 pm

• Released today

• Heads up on Exam 1

• Will be next Friday (September 22nd)

• We will review extensively in class

Today’s Agenda

3

1. Review the User Defined Functions Concepts

2. Introduce Control Structures and Conditionals

Review User Defined Functions

4

Recap of Last Class - User Defined Functions

5

• Programmers can define their user defined
functions to perform certain tasks

• Reasons

• Code Reusability

• More organized

• Good Practice!

• Function Prototypes determine if the function will
return anything and determine the amount of
arguments.

Control Structures & Conditionals

6

• Control structures are a combination of
individual instructions into a single logical unit
with one entry point and one exit point

• Compound Statement is a group of statements
bracketed {	and	} that are executed
sequentially.

Recap of Last Class (cont.)

7

int main(void)
{

 printf("Hello World \n");
 return 0;
}

int main(void)
{
 return 0;
}

Variable Scope

8

• Now that we have learned control structures, it is time to discuss variable
scope.

• Scope is the level of access a variable has in a program run

• There are two types of scopes with variables.

• Global Scope (Bad!!!!!)

• Local Score (Good!!!)

• Global means all components (functions have access to the value and can
manipulate it)

• Why is that bad?

• Never use Global Variables in this course unless Dr. Moran says it is ok

• Local means only the component within the control structure has access
the value and can perform certain operations on it.
• Good Practice!!!

What are Conditions

9

• Everyday we are always making
decisions based on our surrounding
environment.

• Example 1: If it is cold outside, I will
wear a jacket. If not, I will wear a
short sleeve shirt.

• Example 2: If gas tank is close to
“E”, I will drive to Gas Station, If not,
I will continue to my destination.

• Conditions are expressions that has
an outcome of either 0 or 1.

• C does not recognize Boolean types.

• Based on the condition outcome an
action is executed.

Relational & Equality Operators

10

• When evaluating expressions, we make comparisons.

• There are 6 relational/equality operators.

• Less than (<)

• Greater than (>)

• Less than or equal to (<=)

• Greater than or equal to (>=)

• Equal to (==)

• Not Equal to (!=)

• Important! = and == are two different operators!!

• = is the assignment operator

• == is the equality operator

Relational & Equality Operators in C

11

Operator Meaning Type

< less than relational

> greater than relational

<= less than or equal to relational

>= greater than or equal to relational

(==) equal to equality

!= not equal to equality

Logical Tables

12

Operator Example English Meaning

< x < 0 x is less than 0

> power > MAX_POW power is greater than MAX_POW

<= x <= y x is greater than or equal to y

>= item >= Min_ITEM item is less than or equal to Min_ITEM

(==) mom_or_dad == ‘M’ mom_or_dad is equal to ‘M’

!= num != SENTINEL num is not equal to SENTINEL

Logical Operators

13

• An expression that uses one or more of the three logical
operators

• && (and)

• || (or)

• ! (not)

• && and || operators allows us to combine a set of conditions

• Examples:
• in_range	=	(num	>=	-10	&&	num	<=	10)	

• is_letter	=	(letter	==	‘a’	||	letter	==	‘b’)		

• ! operator complements (opposite result) the condition

• Examples:
• num1	==	num2	

• !(num1	==	num2)	

Logical Tables

14

Operand 1 Operand 2 Operand 1 && Operand 2

nonzero (T) nonzero (T) 1 (T)

nonzero (T) 0 (F) 0 (F)

0 (F) nonzero (T) 0 (F)

0 (F) 0 (F) 0 (F)

Operand 1 Operand 2 Operand 1 && Operand 2

nonzero (T) nonzero (T) 1 (T)

nonzero (T) 0 (F) 1 (T)

0 (F) nonzero (T) 1 (T)

0 (F) 0 (F) 0 (F)

Operand 1 ! Operand 1

nonzero (T) 0 (F)

0 (F) 1 (T)

The && Operator

The || Operator

The ! Operator

Operator Precedence in C

15

Operator Precedence

function	calls Highest
!	+	-	&	(unary)	

operators)*	/	%
+	-

<	<=	>=	>
!=	==
&&
||
(=) Lowest

Acknowledgements

16

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

