
COP 3223H:
Introduction to
C Programming

Dr. Kevin Moran

University of
Central Florida

Fall 2023

Week 3- Class 1:
User Defined

Functions I

Administrivia

2

• Small Programming Assignment One

• Due on Monday (Sept 11th)

• Test script coming soon

• Quiz 1 will be posted Friday

• Due on September 15th (timed, one try!)

• Upcoming Recorded/Virtual Lectures

• Dr. Moran will be traveling next week for ASE’23 in Luxembourg

• Friday Sept 8th - Weds Sept 13th will be recorded lectures (Videos
posted to Webcourses)

• Friday Sept 15th will be a Virtual lecture (Zoom)

Today’s Agenda

3

1. Review the Quadratic Equation Program

2. Begin Introduction of User-defined Functions

Review and Quadratic Equation Program

4

Recap of Last Class - Arithmetic Exp.

5

• Lots of problems that programmers solve involve the
use of formulating mathematical expressions.

• In this course we focus on arithmetic operations (think
algebra level)

• Addition

• Subtraction

• Multiplication

• Division

• Modular (modulus)

Quadratic Equation Program

6

Recap of Last Class (cont.)

7

• Pre-defined C functions from various libraries

• Everything we have done has always been
implemented in the main function

• If we want to do a lot of computation, the main
function will grow large and unwieldy

What if we could organize our code in a way that
separates a set of instructions that complete

semantically coherent tasks?

Introducing Functions!

8

• All C programs execute instructions in functions.

• All the programs we’ve looked at only had 1 function
(main).

• Programs can get bigger based on the problem trying
to be solved.

• It would be very convoluted with all instructions
executed in the main function (this is bad practice!).

• In this lecture, we will learn that programmers can
define their own user-defined functions to perform
tasks.

Benefits of Defining our Own Functions

9

• Improves Readability

• Improves Reusability

• Helps to organize the abstractions in your
program

User-defined Functions

10

• One way that programmers implement top-
down design is defining their own functions
(user defined functions)

• User defined functions are sets of instructions
that are defined by the programmer

• Programmers will break down a larger problem
into subproblems and will solve these
subproblems in user-defined functions

• In order to invoke the function, you must call it

Function Call Syntax

11

int main() {

 printf("About to call my function!!!\n");
 myOwnFunction(); // Function call statement

}

Function Call Statement

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");
 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()
{
 printf("This is my awesome function!!!\n");
}

Function Prototypes

12

• Just like variables, functions must be declared as well.

• Prototypes allows the Operating System know how
much memory space needs to be reserved based on
the return type and arguments.

Function

Prototype

Function Definitions

13

• Just like declaring a variable, you must assign it a value.

• For function definitions, you must write out the set of
instructions to perform the task that needs to be written
out.

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");
 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()
{
 printf("This is my awesome function!!!\n");
}

Function

Definition

Tracing C Program with User Defined Function

14

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");
 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()
{
 printf("This is my awesome function!!!\n");
}

Here

Tracing C Program with User Defined Function

15

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");
 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()
{
 printf("This is my awesome function!!!\n");
}

Here

Tracing C Program with User Defined Function

16

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");
 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()
{
 printf("This is my awesome function!!!\n");
}

Here

Tracing C Program with User Defined Function

17

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");
 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()
{
 printf("This is my awesome function!!!\n");
}

Here

Hold

Tracing C Program with User Defined Function

18

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");
 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()
{
 printf("This is my awesome function!!!\n");
}

Here

Hold

Tracing C Program with User Defined Function

19

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");
 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()
{
 printf("This is my awesome function!!!\n");
}

Here

Hold

Tracing C Program with User Defined Function

20

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");
 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()
{
 printf("This is my awesome function!!!\n");
}

Here

Tracing C Program with User Defined Function

21

#include <stdio.h>

void myOwnFunction();

int main() {

 printf("About to call my function!!!\n");
 myOwnFunction(); // Function call statement

return 0;

}

void myOwnFunction()
{
 printf("This is my awesome function!!!\n");
}

Here

Types of Functions

22

• There are two types of functions.

• Functions that return a value.

• Functions that don’t return a value.

• These types of functions are defined through their
prototypes.

• Functions that don’t return a value have the reserved
word void in front of the name.

• Functions that do return a value have the type of
data (int, double, char) in front of the of the name.

Example of Function that Does Not Return Value

23

#include <stdio.h>

void myFavoriteNumber();

int main()
{
 myFavoriteNumber();

 return 0;
}

void myFavoriteNumber()
{
 int num;

 printf("Enter your favorite number: ");
 scanf("%d", &num);

 printf("Your favorite number is %d\n", num);
}

Example of Function that Does Return Value

24

#include <stdio.h>

int myFavoriteWholeNumber();

int main()
{
 myFavoriteNumber();

 return 0;
}

int myFavoriteWholeNumber()
{
 int num;

 printf("Enter your favorite number: ");
 scanf("%d", &num);

 printf("Your favorite number is %d\n", num);
}

Acknowledgements

25

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

