
COP 3223H:
Introduction to
C Programming

Dr. Kevin Moran

University of
Central Florida

Fall 2023

Week 2- Class 1:
Executable
Statements

Administrivia

2

• Eustis assignment has been posted

• Due on Sunday (Sept 3rd)

• Syllabus Quiz has been posted to Webcourses

• Due on Friday (Sept 3rd) - should only take a few
mins

Today’s Agenda

3

1. Discuss Executable Statements

2. Demo and Activity for Connecting to Eustis

Executable Statements

4

Assignment Statements

5

• Assignment statements stores a value or a
computational result in a variable and is used to
perform most arithmetic operations in a
program.

• = is called the assignment operator  

• Syntax:

• variable	=	expression;

int var;

var = 32;

Compound Assignment Statements

6

• In C, you can create compound assignment
statements in the form of:

sum = sum + var;

Yes! You are seeing double! Let’s take a look at what is happening in a statement like this!

Compound Assignment Statements

7

Input/Output Operations and Functions

8

• Input operation is an instruction that copies data
from an input device into memory. (Ex. Keyboard)

• Output operation is an instruction that displays
information stored in memory.

• Input/Output functions are C functions that
performs an input and output operation (comes
from the stdio.h)

• printf()	//display	to	screen

• scanf()	//collect	input	

Printing Variables

9

• In order to print a variable value, we must instruct
the printf function on how to do this:

• 1. Specify the format of the variable

• 2. The variable name to print

printf("The final values are %d and %lf \n",var,y);

Printing Variables

10

Format
Specifier

Data
Type description Syntax

%d int To print the integer value printf("%d",<int_variable>);

%f float To print the floating number printf("%f",<float_variable>);

%lf double To print the double precision
floating number or long float

printf("%lf",<double_variable>);

%c char To print the character value printf("%c",<char_variable>);

Printing Variables

11

Printing Special Characters

12

Escape Sequence Meaning
\a
 Alert

\b Backspace

\n Newline

\t Horizontal	Tab

\v Vertical	Tab

\\ Backslash

\’ Single	Quote

\” Double	Quote

\? Question	Mark

%% Percent	Symbol

Accepting User Input with scanf()

13

• Copies data into a variable stored in memory

• Collects user input through the keyboard and stores
the value into the respective address of the variable
in memory

scanf("%d", &var);

function name placeholder with

data type delimiter

reference to

memory address

of the var variable

Example scanf()

14

// Header file for input output functions

#include <stdio.h>

// main function -

// where the execution of program begins

int main()

{

int num;

int var;

int val;

printf("Enter 3 values");

scanf("%d", &num);

scanf("%d", &var);

scanf("%d", &val);

printf("%d, %d, %d", num, var, val);

 return 0;

}

Example scanf()

15

// Header file for input output functions

#include <stdio.h>

// main function -

// where the execution of program begins

int main()

{

int num;

int var;

int val;

printf("Enter 3 values");

scanf(“%d%d%d”, &num, &var, &val);

printf("%d, %d, %d", num, var, val);

 return 0;

}

Accepting User Input with scanf()

16

• When collecting any type of information from the user,
there are 2 important details to consider.

1. Data Type: Each data type (int, double , float, and
char) has different size requirements. The placeholder
specification allows C to properly store the specific
value in memory.

2. Memory Location (Address): Each data value needs
to be properly stored somewhere in memory. The
scanf function requires the programmer to specify the
EXACT location in memory of where to store the value.

Return Statements

17

• Return terminates the function and transfers control
from a function back to the activator of the function.
For the main function, the control is transferred
back to the operating system.

• A value is sent back to the operating system. 
• 0 means code executed successfully 
• 1 means code executed with run time error (code
crash).

return 0; // function terminator

Constant Macro

18

• A name that is replaced by a particular constant
value before program is sent to compiler

• Always seen at the top of a program file.

• Syntax:

#define MILES PER KM 0.62137

Macro Constants and Constant Variables

19

• You are probably thinking that macro constants and
constant variables are the same.

• THEY ARE NOT!!!!!

• Constant Variables

• The keyword const is handled by the compiler

• Macro Constant

• The macro is handled by the preprocessor directive.
It replaces the text in the C source file.

Eustis Demo

20

Acknowledgements

21

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

