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Administrivia

• LPA3 due Friday. 

• Semester Feedback Survey will post after class,  

• Will count as Quiz 3 - due Friday. 

• Quiz 4 will be due Friday. 

• All grades will be current by Friday. 

• Final Exam is on Monday December 4th, 
10:00am-12:50pm - (more on this on Friday)



1. Quick Review of Linked List Topics 

2. Demo of Linked List Actions
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Today’s Agenda



Course Logistics
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Linked Lists - Review
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What is a Linked List?
• A linked list is a sequence of nodes in which each node but the last contains the 

address of the next node. 

• When to use a Linked List? 

• You need constant-time insertions/deletions 

• You don’t know how many items will be in a list 

• You don’t need random access to elements 

• You want to be able to insert items into the middle of the list (Priority Queues)

AA 3 B2 B2 23 AC AC 19 /
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Setting Up a Linked List in C
• We will use a typedef struct to set up the node that 

contains the data and pointer to the respective nodes in 
the linked list. 

• Now you may notice node_s after struct. Why is that 
necessary? This allows C to know that the node will point 
to another type node_t. If you don’t, your code won’t 
compile.

typedef struct node_s{ 
    struct node_s * nextptr; 
    int data; 
}node_t;
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Connecting Two Nodes

node_t *n1; 
node_t *n2; 
node_t *head; 

n1 = (node_t *) malloc(sizeof(node_t)); 
n2 = (node_t *) malloc(sizeof(node_t)); 

head = n1; 

n1->data = 3; 
n2->data = -9; 

n1->nextptr = n2; 
n2->nextptr = NULL;



8

Linked List Operations

• We can perform the basic operations with a linked lists 

• Insert 

• Remove 

• Display (traverse) 

• Search 

• Empty
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Linked List Node Insertion

• Insert a new node into the list 

• Insert at the end of the list 

• Traverse until nextptr is NULL 

• Make last nextptr new node 

• Insert in between two nodes 

• Traverse to the position of the list 

• You will need reset the nodes pointers to properly maintain 
the linked list. It’s good practice to draw the list to visually 
see how pointers work!
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Linked List Node Removal

• See if the node even exists in the list 

• Similar with inserting between two nodes, you will 
need to reset the previous adjacent node’s next pointer 
to the old removed node’s next pointer. 

• Draw the picture to visualize!
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Linked List Node Display

• Traverse each node to display the information 

• Simple loop traversal
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Linked List Node Search

• Traverse the list until the data you are seeking is found. 

• Simple loop traversal
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Linked List Empty?

• A simple function. Just check if the head is NULL. 

• Simple right? 🙂
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