
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 14- Class I:
Linked Lists I

2

Administrivia

• SPA5 due tomorrow, LPA3 due Friday.

• Semester Feedback Survey will post after class,

• Will count as Quiz 3 - due Wednesday.

• Quiz 4 will be due Friday.

• All grades will be current by Friday.

• Final Exam is on Monday December 4th, 10:00am-12:50pm -
(more on this on Friday)

• Short Class today and no office hours.

• I will hold makeup virtual office hours tomorrow from
noon-1:00pm.

1. Introduction to Linked Lists

3

Today’s Agenda

Course Logistics

4

Linked Lists

5

Data Structures (Review)
• Data structures are a composite of related data items stored under the same name.

• Data structures allows programmers to store data in a more organized fashion.

• You have learned one already… Arrays!

• You will learn more in Computer Science 1

• Linked List

• Stack

• Queues

• Binary Trees

• Binary Search Trees

• Heaps

• AVL Trees

• Tries

• If we are covering this then CONGRATLUATIONS! You get a head start to understanding
Linked Lists Data Structures!

6

What is a Linked List?
• A linked list is a sequence of nodes in which each node but the last contains the

address of the next node.

• When to use a Linked List?

• You need constant-time insertions/deletions

• You don’t know how many items will be in a list

• You don’t need random access to elements

• You want to be able to insert items into the middle of the list (Priority Queues)

AA 3 B2 B2 23 AC AC 19 /

7

Setting Up a Linked List in C
• We will use a typedef struct to set up the node that

contains the data and pointer to the respective nodes in
the linked list.

• Now you may notice node_s after struct. Why is that
necessary? This allows C to know that the node will point
to another type node_t. If you don’t, your code won’t
compile.

typedef struct node_s{
 struct node_s * nextptr;
 int data;
}node_t;

8

Some Things to Know About Linked Lists

• The first node of the linked list is the “head” of the list.

• There are doubly and singly linked list

• In this course we will only observe the singly linked list

• You can only traverse in one direction of a singly linked
list.

• Singly linked lists has only one pointer that points in
one direction.

• The last node points to NULL.

9

Connecting Two Nodes

node_t *n1;
node_t *n2;
node_t *head;

n1 = (node_t *) malloc(sizeof(node_t));
n2 = (node_t *) malloc(sizeof(node_t));

head = n1;

n1->data = 3;
n2->data = -9;

n1->nextptr = n2;
n2->nextptr = NULL;

10

Linked List Operations

• We can perform the basic operations with a linked lists

• Insert

• Remove

• Display (traverse)

• Search

• Empty

11

Linked List Node Insertion

• Insert a new node into the list

• Insert at the end of the list

• Traverse until nextptr is NULL

• Make last nextptr new node

• Insert in between two nodes

• Traverse to the position of the list

• You will need reset the nodes pointers to properly maintain
the linked list. It’s good practice to draw the list to visually
see how pointers work!

12

Linked List Node Removal

• See if the node even exists in the list

• Similar with inserting between two nodes, you will
need to reset the previous adjacent node’s next pointer
to the old removed node’s next pointer.

• Draw the picture to visualize!

13

Linked List Node Display

• Traverse each node to display the information

• Simple loop traversal

14

Linked List Node Search

• Traverse the list until the data you are seeking is found.

• Simple loop traversal

15

Linked List Empty?

• A simple function. Just check if the head is NULL.

• Simple right? 🙂

16

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

