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Administrivia

• SPA5 due tomorrow, LPA3 due Friday. 

• Semester Feedback Survey will post after class,  

• Will count as Quiz 3 - due Wednesday. 

• Quiz 4 will be due Friday. 

• All grades will be current by Friday. 

• Final Exam is on Monday December 4th, 10:00am-12:50pm - 
(more on this on Friday) 

• Short Class today and no office hours.  

• I will hold makeup virtual office hours tomorrow from 
noon-1:00pm.



1. Introduction to Linked Lists
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Today’s Agenda



Course Logistics
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Linked Lists
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Data Structures (Review)
• Data structures are a composite of related data items stored under the same name. 

• Data structures allows programmers to store data in a more organized fashion. 

• You have learned one already… Arrays! 

• You will learn more in Computer Science 1 

• Linked List 

• Stack 

• Queues 

• Binary Trees 

• Binary Search Trees 

• Heaps 

• AVL Trees 

• Tries 

• If we are covering this then CONGRATLUATIONS! You get a head start to understanding 
Linked Lists Data Structures!
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What is a Linked List?
• A linked list is a sequence of nodes in which each node but the last contains the 

address of the next node. 

• When to use a Linked List? 

• You need constant-time insertions/deletions 

• You don’t know how many items will be in a list 

• You don’t need random access to elements 

• You want to be able to insert items into the middle of the list (Priority Queues)

AA 3 B2 B2 23 AC AC 19 /
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Setting Up a Linked List in C
• We will use a typedef struct to set up the node that 

contains the data and pointer to the respective nodes in 
the linked list. 

• Now you may notice node_s after struct. Why is that 
necessary? This allows C to know that the node will point 
to another type node_t. If you don’t, your code won’t 
compile.

typedef struct node_s{ 
    struct node_s * nextptr; 
    int data; 
}node_t;
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Some Things to Know About Linked Lists

• The first node of the linked list is the “head” of the list. 

• There are doubly and singly linked list 

• In this course we will only observe the singly linked list 

• You can only traverse in one direction of a singly linked 
list. 

• Singly linked lists has only one pointer that points in 
one direction. 

• The last node points to NULL.
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Connecting Two Nodes

node_t *n1; 
node_t *n2; 
node_t *head; 

n1 = (node_t *) malloc(sizeof(node_t)); 
n2 = (node_t *) malloc(sizeof(node_t)); 

head = n1; 

n1->data = 3; 
n2->data = -9; 

n1->nextptr = n2; 
n2->nextptr = NULL;
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Linked List Operations

• We can perform the basic operations with a linked lists 

• Insert 

• Remove 

• Display (traverse) 

• Search 

• Empty
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Linked List Node Insertion

• Insert a new node into the list 

• Insert at the end of the list 

• Traverse until nextptr is NULL 

• Make last nextptr new node 

• Insert in between two nodes 

• Traverse to the position of the list 

• You will need reset the nodes pointers to properly maintain 
the linked list. It’s good practice to draw the list to visually 
see how pointers work!
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Linked List Node Removal

• See if the node even exists in the list 

• Similar with inserting between two nodes, you will 
need to reset the previous adjacent node’s next pointer 
to the old removed node’s next pointer. 

• Draw the picture to visualize!
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Linked List Node Display

• Traverse each node to display the information 

• Simple loop traversal
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Linked List Node Search

• Traverse the list until the data you are seeking is found. 

• Simple loop traversal
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Linked List Empty?

• A simple function. Just check if the head is NULL. 

• Simple right? 🙂



16

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s 
COP 3223H course  


