
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 15 - Class 1II:
Exam 3 Review

• Large Programming Assignment 3 due today.

• I will be holding office hours today.

• Course Experience Survey is due Today at 11:59 pm.

• Quiz 4 is due on Sunday by 11:59pm.

• Exam 3 is Monday. December 4th!

• We will review the format and content extensively
today.

2

Administrivia

1. One Dynamic Memory topic

2. Exam Review

3

Today’s Agenda

• 2 Parts, In-class exam, closed book, 100 points total

• Part 1: Short Answer Questions

• 4-5 questions

• Either provide program output or answer with a code snippet or a few
short sentences.

• Part 2: Programming Questions

• 4-5 questions with multiple parts

• Either provide the output of a more complex program, or write several
lines of code

• Focused on material from Weeks 11-15, but this builds on concepts from
Weeks 1-5.

• You will have the entire exam period to complete the exam

• Please bring your UCF ID to the exam
4

Exam 3 Format

Course Logistics

5

Week 11 - Class I: Strings Part I

• Strings are an array of characters.

• Each element of the array stores a character.

• The last character of the string array is the null
character \0.

• \0 helps the compiler know when it reaches the end
of a string for certain function operations.

• Everything after \0 in the character array is known as
garbage values.

6

Character Arrays (Strings)

• Declaring the string has the exact
same procedures as declaring an
array of ints and doubles.

• All you have to place is the data
type char.

• Example:

7

Character Arrays Declaration

char word[5];

Stack Space

AA9

AA8

AA7

AA6

AA5

AA4 word[4] = ???

AA3 word[3] = ???

AA2 word[2] = ???

AA1 word[1] = ???

AA0 word[0] = ???

• Strings have some unique syntaxes
that allow for a proper declaration
and initialization statement.

• C allows strings to be fully typed
when be declared as long as the
assignment operator is used.

• Double quotes are used to
incorporate multiple characters.

8

Character Arrays Declaration

Stack Space

AA9 word[9] = ???

AA8 word[8] = ???

AA7 word[7] = ‘\0’

AA6 word[6] = ‘u’

AA5 word[5] = ‘h’

AA4 word[4] = ‘c’

AA3 word[3] = ‘a’

AA2 word[2] = ‘k’

AA1 word[1] = ‘i’

AA0 word[0] = ‘P’
char word[10] = "Pikachu";

• Strings also have the initializer list like the ones we saw
when working integers and doubles.

• They really don’t need to be used, but you should know
they exist.

• It’s just extra time-consuming typing.

• You also MUST include the null character!

9

Character Arrays Declaration

char word3[10] = {'P','i','k','a','c','h','u','\0'};

• you may think we can separate the declaration and
initialization statements for strings, however we can’t. It
can only be one statement!

• word is really nothing more than a pointer, so it expects
an address to be assigned.

10

Char Array Declaration and Initialization

char word[10];
word = "Pikachu";

There is another way we can separate the
declaration and initialization statement. It

involves the use of a string library function called
strcpy. We see this very soon!

• Collecting input for a string follows very similar
procedures as collecting other data types.

• Two Differences:

• Placeholder %s

• No address operator (&)

11

Collecting a String with scanf

char pokemon[10];

scanf('%s', pokemon);

printf("the pokemon is %s\n", pokemon);

Course Logistics

12

Week 11 - Class II: Strings Part II

• Strings are just an array characters.

• We can technically form words and even phrases.

• Does a single scanf statement with ONE placeholder
allow multiple words to be collected into some string?

13

Limitations of using scanf for Strings

char phrase[30];

scanf('%s', phrase);

printf("the phrase is %s\n", phrase);

What if we type “Super
Mario”?

• Strings are just an array characters.

• We can technically form words and even phrases.

• Does a single scanf statement with ONE placeholder
allow multiple words to be collected into some string?

14

Limitations of using scanf for Strings

char phrase[30];

scanf('%s', phrase);

printf("the phrase is %s\n", phrase);

What if we type “Super
Mario”?

Super Mario	
The phrase is Super

• Strings are just an array characters.

• We can technically form words and even phrases.

• Does a single scanf statement with ONE placeholder
allow multiple words to be collected into some string?

15

Limitations of using scanf for Strings

char phrase[30];

scanf('%s', phrase);

printf("the phrase is %s\n", phrase);

What if we type “Super
Mario”?

Super Mario	
The phrase is Super

Scanf stops reading values for a string when it
encounters the whitespace character (‘ ‘)!

• Here is a simple user defined function that you can use
to clear the input buffer.

• This function should be only when the buffer needs to
be cleared. In other words, if your code is skipping an
input collection statement, then that means the buffer
had readable content.

16

Clearing the Input Buffer

void clearBuffer(){
 while(getchar() != '\n');
}

• Something we’ve noticed is that scanf has some
limitations.

• scanf only allows one word to be read.

• How can programmers input a sentence as string?

• gets() is a simple function that allows user to input
more than one word that can be stored in a character
array (allowing whitespaces).

• puts() is another way to display a string onto the
screen.

17

gets() and puts()

18

gets() and puts() Example

char phrase[10];
printf("Enter a phrase: ");
gets(phrase);

puts(phrase);
Enter a phrase: Golden	
Golden

'gets' has been explicitly marked
deprecated here
__deprecated_msg("This function is
provided for compatibility reasons only.
Due to security concerns inherent in the
design of gets(3), it is highly
recommended that you use fgets(3)
instead.")

• fgets() is similar to gets(), but with extra syntax.

• fgets() meets the possible that gets() raises.

• fgets() takes three arguments

• Array

• String Length Limit

• File to read from (stdin which is standard input)

• fputs() works like puts(), except that it doesn’t
automatically append a newline

19

fgets()

• fgets is a function that allows to process characters
(including a whitespace characters) until newline
character (‘\n’) is read

• If fgets receives a strings bigger than the provided
limit, it will just append the null character in the last
element and send the remaining characters into the
buffer space

20

Understanding how fgets() works

21

The String library

Function Stack Space

strcpy() Makes a copy of source, a string, in the character array accessed by dest:

strncpy() Makes a copy of up to n characters from source in dest: strncpy(dest, source, 5) stores the first five characters
of the source and does NOT add a null character.

strcat() Appends source to the end of dest: strcat(dest, source)

strncat() Appends up to n characters of source to end of dest, adding the null character if necessary.

strcmp() Compares s1 and s2 alphabetically. Returns a negative value if s1 should precede s2, a zero if strings are equal,
and a positive value if s2 should precede s1 in an alphabetized list. strcmp(s1,s2)

strncmp() Compares the first n characters in s1 and s2 returning positive, zero, and negative values like strcmp.

strlen() Returns the number of characters in s, not counting the terminating null. strlen(s)

strtok() Breaks the parameter string into tokens finding groups of characters separated by any of the delimiter
characters. Each group is separated with ‘\0’.

strchr() Returns a pointer to the first location of a character located in the string. Null is returned if character is not
found.

strpbrk() Return a pointer to the first location in the strings that holds any character found in another string.

strchr() Returns a pointer to the last occurrence of a character in the string. Null is returned if character not found.

strstr() Returns a pointer to the first occurrence of string s2 in string s1. Null is returned if character not found.

Course Logistics

22

Week 11 - Class III: Strings Part III

23

strlen

• The user defined function you just saw on the previous slide is
already implemented in the string.h file.

• Function takes one parameter which is the address of the string!

• It uses the same idea from our own custom function.

• Start at the first address passed in the function.

• Iterate through the string and count each character until the first
null character is found.

• Return the counter value.

• IMPORTANT! The value return tells what index contains the null
character!

24

strlen Example

char word[100] = "Mondays";
int len = strlen(word);

len = 7;

25

strlen Example 2

len = 3;

char word[100] = "Mondays";
word[3] = "\0";
int len = strlen(word);

26

strcpy

• The string library provides a function that allows you to completely copy the
contents of a string into another including the null character (‘\0’).

• This is a very common task to do in many problems.

• Hence why it even exists!

• The function takes two parameters.

• The first parameter is the destination string (an address)

• Where the contents copied need to be stored in memory

• The second parameter is the source string (an address)

• Where the contents that are needed to be copied are stored in memory

• Important: You can also place a string literal has the source. This is the
proper

27

strcpy Example

char string1[8];
char string2[8] = "Cakes";

strcpy(string1, string2);
strcpy(string1, "Cookies");

28

Something to Avoid

• Since we have learned that arrays are simply pointers,
you might try to some sort statement like this…

• This is a dangerous statement as we are assigning a
pointer to a string literal. This will cause to C to view it
as a read only string.

• Now that we have seen strcpy, you might try to write
the following statement after the above statement.

char *string = "Hello!";

strcpy(string, "hi");

This code will crash!!

29

Substrings and strncpy
• Substrings are a fragment of a longer string

• strncpy is the function to use to generate substrings of a string

• The function takes 3 parameters

• The first parameter is the destination (address)

• The second parameter is the source (address)

• The third parameter is the number of characters (integer)

• Examples

• String called “Andrew”

• Substring of this is “And”

• Substring of this is “drew”

• “Adw” is NOT a substring!!

30

strcat

• Concatenation is taking two strings and joining them together as one string. It
basically appending one string to the end of the another one.

• Example: “Progr” concatenated with “amming” would be “Programming”

• strcat and strncat are the string functions that handle concatenation

• strcat appends an entire string (simply copies the entire source string)

• First argument is the destination string (address)

• Second argument is the source string (address)

• strncat appends the first n characters of a string (handles the null character
properly)

• First argument is the destination string (address)

• Second argument is the source string (address)

• Third argument is the number of characters (integer)

31

strcat

char string5[8] = "Vanilla";
char string6[8] = "Cookie";

strcat(string5, string6);

printf("string5 = %s\n", string5);
printf("string6 = %s\n", string6);

Course Logistics

32

Week 12 - Class I: Structs

• A database is a collection of information stored in a
computer’s memory or in a disk file.

• A database is subdivided into records, which are a
collection of information about one data object.

• The structure of the record is determined by the
structure of the object’s data type.

• C provides several ways to define structures.

33

User Defined Structure Types

34

User Defined Structure Syntax

#define MAX 30

struct book_s{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
};

struct keyword

Component
Members/Fields

Name of struct

35

Organizing User-defined structs

// preprocessor statements
#include<stdio.h>
#define MAX 30

struct book_s{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
};

// user defined function prototypes

int main(void){

return 0;

}

// user defined function definitions

• The structure definition
must be placed at the
top of your C file. More
specifically, it should be
between your
preprocessor statements
and function prototypes.

36

Assigning Values to the Components of a Struct

• C has a simple operator called the direct selection
operator (.).

• This allows us to properly access and assign values in
the structure.

struct book_s mybook;

strcpy(mybook.title, "Julius Cesar");
strcpy(mybook.author, "William Shakespeare");
strcpy(mybook.title, "Play");
mybook.isbn = 1234;

.title “Julius Caesar”

.author “William Shakespeare”

.subject “Play"

.isbn 1234

37

Stack Space Visualization with Structs

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 my book.isbn

AA2 mybook.subject

AA1 mybook.author

AA0 mybook, my
book.title

#define MAX 30

struct book_s{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
};

int main(void){

struct book_s mybook;

return 0;

}

38

Typedef Structures

• As you may of saw, every
time we must use struct
(such as a declaration), we
are required to type out the
keyword struct.

• C provides a special
keyword that will allow
programmers to avoid using
the struct keyword.

• typedef is a special
keyword that allows C to
assign a name to some type.

#define MAX 30
typedef struct{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
}book_t;

int main(void){

book_t mybook;

strcpy(mybook.title, "Julius Cesar");
strcpy(mybook.author, "William Shakespeare");
strcpy(mybook.title, "Play");
mybook.isbn = 1234;

return 0;

}

• Since structures are basically
special variables, we can also use
them as input/output parameters
for user defined functions.

• We can perform both pass-by-
value and pass-by-reference.

• With structures it is preferred that
they are passed by reference
since it easier (on the stack
space) to pass the address (8
bytes always) of the struct rather
than coping all the values of each
component (number of bytes
varies but could most likely be
bigger than 8).

39

Structs and Function Parameters

void displayBook(book_t mybook){
 printf("%s\n, mybook.title");
 printf("%s\n, mybook.author");
 printf("%s\n, mybook.subject");
 printf("%s\n, mybook.isbn");
}

void displayBook(book_t *mybook){
 printf("%s\n, mybook.title");
 printf("%s\n, mybook.author");
 printf("%s\n, mybook.subject");
 printf("%s\n, mybook.isbn");
}

Pass by Value

Pass by Reference

• The indirect component selection operator is the
character sequence -> placed between a pointer variable
and a component name create a reference that follows
the pointer to a structure and selects the component.

• While first one is valid to use, it can be a bit cumbersome
to use, which is why C provides the indirect operator.

40

Indirect Component Selection Operator

book_t *book_ptr = &mybook;

char title[MAX] = (*book_ptr).title;
char title2[MAX] = book_ptr->title;

Course Logistics

41

Week 12 - Class II: Dynamic Memory Allocation

42

Pointer Refresher

• Special data type that holds an address a memory

• * is the deference operator

• & is the address operator

C4

5

0

1

2

3

4

A B C D

int x = 5; //C4
int *ptrx = &x; // C4
printf("%d\n", *ptrx); // 5

43

Static Memory

• For this entire course, we have been provided by the OS
memory to utilize for our program in the stack space.

• Limitations:

• Cannot change the size we are given

• How can this be potentially bad?

• At compilation time (when code compiles) the memory
allocation for the program is predetermined.

• “Get what you get and don’t get upset!”

44

Dynamic Memory

• Sometimes we may not know how much we really need
for a program.

• Example

• Array Allocation – what if we allocated 5 elements
and realized we need more elements?

• Memory that we can change in size during the program
run (different then compilation time).

• Extra memory that we may need during a program is in
the heap space.

45

sizeof Operator

• Returns the size (in bytes) of a data type

• sizeof(int) returns 4 bytes

• sizeof(double) returns 8 bytes

• sizeof(char) returns 1 byte

46

malloc()

• Part of the stdlib.h file

• Allocates a single memory block of any built in or user-defined type

• Function that returns memory based on the number of bytes needed

• Parameter of the function takes the number of bytes needed

• The function returns an address or NULL

• What kind of variable will hold that address?

• What happens if NULL is returned?

• Heap – region of memory in which the function malloc dynamically
allocates blocks of storage

47

Stack and Heap Space

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 int *ptr

AA2

AA1

AA0

Heap Space

48

Stack and Heap Space

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 int *ptr

AA2

AA1

AA0

Heap

Heap

Stack

Static/Global

Code (Text)

Program
Memory Allocation

49

malloc() + free() Example

int *pointer;
pointer = malloc(sizeof(int));
free(pointer);

Course Logistics

50

Week 13 - Class I: Dynamic Arrays

• The arrays we are dealing with use static memory (stack space).

• Static means no flexibility in changing the size of memory
required.

• Adding this flexibility results in dynamic memory

• We will study this at the end of the semester.

• Never use variables when declaring an array as you can have
potential danger in what the value a variable can hold.

• VLAs pose danger if we accidentally change a value to a size
that can’t be properly handled in memory.

51

Variable Length Arrays ☹

52

Dynamic Array Example

int size;

printf ("How many elements would you like: "); scanf(“%d", &size);

int *array = (int *) malloc(size * sizeof(int));

for(int x = 0; x < size; ++x){

 printf("Enter a value: ");
 scanf(“%d", &array[x]) ;
}

for(int x = 0; x < size; ++x){

 printf(“array[%d] = %d\n”, x, array[x]) ;
 free (array) ;
 array = NULL;
}

• You have learned that the sizeof operator returns the
number of bytes.

• Since dynamic memory returns a heap for a pointer to
point at, it will not return the number of elements but
instead the size of the pointer.

• So how would you keep track of valid entries in a
dynamic array?

• Use a Regular Variable

53

About sizeof()

54

free()

• After free() is called, the value in the parameter doesn’t
change.

• Only significant is that the memory is labeled free from the
OS perspective

• What do you think this means?

• What should we do with the pointer that is passed in the
function call.

• Set it to NULL!!!

Course Logistics

55

Week 13 - Class II: Dynamic Arrays & Structs

• The indirect component selection operator is the
character sequence -> placed between a pointer variable
and a component name create a reference that follows
the pointer to a structure and selects the component.

• While first one is valid to use, it can be a bit cumbersome
to use, which is why C provides the indirect operator.

56

Indirect Component Selection Operator

book_t *book_ptr = &mybook;

char title[MAX] = (*book_ptr).title;
char title2[MAX] = book_ptr->title;

• Similar syntax to dealing with primitive data types.

57

Dynamic Memory and Structs

typedef struct{
 int year;
 char title[30];
}movie_t;

movie_t movie1; // declared in stack space
movie_t *movie2 = (movie_t *) malloc(sizeof(movie_t)); // declared in heap space

free(movie2);

58

Visualizing Dynamic Struct Allocation

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 *movie2

AA2

AA1

AA0

Heap

movie_2 -> year	
movie_2 -> title

• Similar syntax to dealing with primitive data types.

59

Populating the Components of a Dynamic Struct

typedef struct{
 int year;
 char title[30];
}movie_t;

movie_t *movie2 = (movie_t *) malloc(sizeof(movie_t));

strcpy(movie2->title, "Avatar");
movie2->year = 2022;

printf("%s\n", movie2->title) ;
printf("%d\n", movie2->year);

free (movie2) ;

60

Dynamic Struct Components

typedef struct{
 int year;
 char * title;
 char * author;
}book_t;

Course Logistics

61

Week 14 - Class I: Dynamic Structs II

62

Visualizing Dynamic Struct Allocation

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 *book1

AA2

AA1

AA0

Heap

book1 -> year	
book1 -> title	
book1 -> year

H a r r y

63

Deallocating Memory

typedef struct{
 int year;
 char * title;
 char * author;
}book_t; Anything

wrong with this?

book_t * book1 = (book_t *) malloc(sizeof(book_t));

book1->title = (char *) malloc(sizeof(char) * 50);

strcpy(book1->title, "Harry Potter and the Goblet of Fire”);

book1 -> year = 1998;

free(book1);

64

Arrays and structs

typedef struct{
 int year;
 char * title;
 char * author;
}book_t;

• Guess What! We can also have a
dynamic array of structs that
contains dynamic components!

• The same rules apply that we
have been learning with
dynamic memory!

book_t * mylibrary = (book_t *) malloc(sizeof(book_t) * 10);

Course Logistics

65

Week 15 - Class I & II: Linked Lists I & II

66

What is a Linked List?
• A linked list is a sequence of nodes in which each node but the last contains the

address of the next node.

• When to use a Linked List?

• You need constant-time insertions/deletions

• You don’t know how many items will be in a list

• You don’t need random access to elements

• You want to be able to insert items into the middle of the list (Priority Queues)

AA 3 B2 B2 23 AC AC 19 /

67

Setting Up a Linked List in C
• We will use a typedef struct to set up the node that

contains the data and pointer to the respective nodes in
the linked list.

• Now you may notice node_s after struct. Why is that
necessary? This allows C to know that the node will point
to another type node_t. If you don’t, your code won’t
compile.

typedef struct node_s{
 struct node_s * nextptr;
 int data;
}node_t;

68

Linked List Operations

• We can perform the basic operations with a linked lists

• Insert

• Remove

• Display (traverse)

• Search

• Empty

69

Linked List Node Insertion

• Insert a new node into the list

• Insert at the end of the list

• Traverse until nextptr is NULL

• Make last nextptr new node

• Insert in between two nodes

• Traverse to the position of the list

• You will need reset the nodes pointers to properly maintain
the linked list. It’s good practice to draw the list to visually
see how pointers work!

70

Linked List Node Removal

• See if the node even exists in the list

• Similar with inserting between two nodes, you will
need to reset the previous adjacent node’s next pointer
to the old removed node’s next pointer.

• Draw the picture to visualize!

71

Linked List Node Display

• Traverse each node to display the information

• Simple loop traversal

72

Linked List Node Search

• Traverse the list until the data you are seeking is found.

• Simple loop traversal

73

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

