
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 13- Class I:
Dynamic Arrays

COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 13- Class I:
Dynamic Arrays

• LPA 2 due on November 17th.

• Mid-Semester Feedback Survey will be posted today.

• Please complete to count as a quiz grade.

• Office Hours Virtual Today, Dr. Moran still sick.

3

Administrivia

1. Demo of Structs

2. Intro to Dynamic Memory Allocation in C

4

Today’s Agenda

Course Logistics

5

Review

6

Pointer Refresher

• Special data type that holds an address a memory

• * is the deference operator

• & is the address operator

C4

5

0

1

2

3

4

A B C D

int x = 5; //C4
int *ptrx = &x; // C4
printf("%d\n", *ptrx); // 5

7

Static Memory

• For this entire course, we have been provided by the OS
memory to utilize for our program in the stack space.

• Limitations:

• Cannot change the size we are given

• How can this be potentially bad?

• At compilation time (when code compiles) the memory
allocation for the program is predetermined.

• “Get what you get and don’t get upset!”

8

Dynamic Memory

• Sometimes we may not know how much we really need
for a program.

• Example

• Array Allocation – what if we allocated 5 elements
and realized we need more elements?

• Memory that we can change in size during the program
run (different then compilation time).

• Extra memory that we may need during a program is in
the heap space.

9

sizeof Operator

• Returns the size (in bytes) of a data type

• sizeof(int) returns 4 bytes

• sizeof(double) returns 8 bytes

• sizeof(char) returns 1 byte

10

malloc()

• Part of the stdlib.h file

• Allocates a single memory block of any built in or user-defined type

• Function that returns memory based on the number of bytes needed

• Parameter of the function takes the number of bytes needed

• The function returns an address or NULL

• What kind of variable will hold that address?

• What happens if NULL is returned?

• Heap – region of memory in which the function malloc dynamically
allocates blocks of storage

11

Stack and Heap Space

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 int *ptr

AA2

AA1

AA0

Heap Space

12

Stack and Heap Space

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 int *ptr

AA2

AA1

AA0

Heap

Heap

Stack

Static/Global

Code (Text)

Program
Memory Allocation

13

malloc Example

int *pointer;
pointer = malloc(sizeof(int));

14

free()

• After we are done with using our dynamic memory we
have asked for we need to give it back.

• Why do you think we need to give back memory?

• Parameter is an address in memory (POINTERS!)

• Rule of thumb every malloc() call there should be a
free().

15

malloc() + free() Example

int *pointer;
pointer = malloc(sizeof(int));
free(pointer);

16

free()

• After free() is called, the value in the parameter doesn’t
change.

• Only significant is that the memory is labeled free from the
OS perspective

• What do you think this means?

• What should we do with the pointer that is passed in the
function call.

• Set it to NULL!!!

Course Logistics

17

Demo

Course Logistics

18

Dynamic Arrays

• The arrays we are dealing with use static memory (stack space).

• Static means no flexibility in changing the size of memory
required.

• Adding this flexibility results in dynamic memory

• We will study this at the end of the semester.

• Never use variables when declaring an array as you can have
potential danger in what the value a variable can hold.

• VLAs pose danger if we accidentally change a value to a size
that can’t be properly handled in memory.

19

Variable Length Arrays ☹

20

Dynamic Array Example

int size;

printf ("How many elements would you like: "); scanf(“%d", &size);

int *array = (int *) malloc(size * sizeof(int));

for(int x = 0; x < size; ++x){

 printf("Enter a value: ");
 scanf(“%d", &array[x]) ;
}

for(int x = 0; x < size; ++x){

 printf(“array[%d] = %d\n”, x, array[x]) ;
 free (array) ;
 array = NULL;
}

• You have learned that the sizeof operator returns the
number of bytes.

• Since dynamic memory returns a heap for a pointer to
point at, it will not return the number of elements but
instead the size of the pointer.

• So how would you keep track of valid entries in a
dynamic array?

• Use a Regular Variable

21

About sizeof()

• Insert

• Delete

• Doubling our array

• If the array is full

• Decrease our array

• If we are using less than half of the given array

• Search for a value in the array

• Display content

• Sort the data in the array

• You will learn a lot of sorting techniques in CS1 ☺

• Is the array empty? Meaning there are no valid values stored.

22

Common Functions we can create with Dynamic Arrays

23

2-D Dynamic Array Example
int row, col;

printf("Enter the number of rows and columns you would like. Please separate with a
space.\n");
printf("Enter here: ");

scanf("%d%d", &row, &col);

int *arr = (int *)malloc(row * col * sizeof(int));

int i,j;
for (i = 0; i < row; i++)
 for(j = 0; j < col; j++)
 *(arr + i*col +j)= i + j;

for (i = 0; i < row; i++){
 for(j=0; j < col; j++){
 printf("&d ", *(arr + i*col + j));
 }
 printf("\n") ;
}
 free(arr) ;
 arr = NULL;

24

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

