
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 12- Class I:
Structs Part I

• SPA 3 now due on Weds. - Python script out now

• SPA 4 and LPA 2 have been released, are be due on
November, 10th, and November 17th respectively.

• Exam grades are on Webcourses!

• Mid-Semester Feedback Survey will be posted today.

• Please complete to count as a quiz grade.

• No Class on Friday this week (Veterans Day)!

2

Administrivia

1. Intro to Structs

3

Today’s Agenda

Course Logistics

4

Review

5

strlen	Example

char word[100] = "Mondays";
int len = strlen(word);

len = 7;

6

strcpy	Example

char string1[8];
char string2[8] = "Cakes";

strcpy(string1, string2);
strcpy(string1, "Cookies");

7

strcat

char string5[8] = "Vanilla";
char string6[8] = "Cookie";

strcat(string5, string6);

printf("string5 = %s\n", string5);
printf("string6 = %s\n", string6);

8

strcmp

char string7[8] = "red";
char string8[8] = "blue";

int result = strcmp(string7, string8);

printf("result = %d\n", result);

Course Logistics

9

Structs

• A database is a collection of information stored in a
computer’s memory or in a disk file.

• A database is subdivided into records, which are a
collection of information about one data object.

• The structure of the record is determined by the
structure of the object’s data type.

• C provides several ways to define structures.

10

User Defined Structure Types

11

User Defined Structure Syntax

#define MAX 30

struct book_s{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
};

struct keyword

Component
Members/Fields

Name of struct

12

Organizing User-defined structs

// preprocessor statements
#include<stdio.h>
#define MAX 30

struct book_s{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
};

// user defined function prototypes

int main(void){

return 0;

}

// user defined function definitions

• The structure definition
must be placed at the
top of your C file. More
specifically, it should be
between your
preprocessor statements
and function prototypes.

13

Declaring a struct variable in C

// preprocessor statements
#include<stdio.h>
#define MAX 30

struct book_s{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
};

// user defined function prototypes

int main(void){

return 0;

}

// user defined function definitions

• The structure definition
must be placed at the
top of your C file. More
specifically, it should be
between your
preprocessor statements
and function prototypes.

14

Declaring a struct variable in C

• Declaring a structure
variable is 99.9% the
same as declaring any
other sort of variable we
have seen in this course.

• The ONLY difference is
that we must use the
keyword struct.

#define MAX 30

struct book_s{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
};

int main(void){

struct book_s mybook;

return 0;

}

15

Assigning Values to the Components of a Struct

• C has a simple operator called the direct selection
operator (.).

• This allows us to properly access and assign values in
the structure.

struct book_s mybook;

strcpy(mybook.title, "Julius Cesar");
strcpy(mybook.author, "William Shakespeare");
strcpy(mybook.title, "Play");
mybook.isbn = 1234;

.title “Julius	Caesar”

.author “William	Shakespeare”

.subject “Play"

.isbn 1234

16

Precedence and Associativity of Operators

Precedence Symbols Operator Associativity

Highest a[j]	f(…) Subscripting, function calls, direct component selection Left

++	— Postfix increment and decrement Left

++	—	!	-	+	&	* Prefix increment and decrement, logical not, unary negation
and plus, address of, indirection

Right

(type	name)	 Casts Right

*	/	% Multiplicative operators (multiplication, division, remainder) Left

+	- Binary additive operators (addition and subtraction) Left

<	>	<=	>= Relational Operators Left

!=	=	 Equality/ Inequality Operators Left

&& Logical And Left

|	| Logical Or Left

Lowest +=	=	-=	*=	/=	%= Assignment Operators Right

17

Stack Space Visualization with Structs

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 my	book.isbn

AA2 mybook.subject

AA1 mybook.author

AA0 mybook,	my	
book.title	

#define MAX 30

struct book_s{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
};

int main(void){

struct book_s mybook;

return 0;

}

18

Stack Space Visualization with Structs

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 my	book.isbn

AA2 mybook.subject

AA1 mybook.author

AA0 mybook,	my	
book.title	

#define MAX 30

struct book_s{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
};

int main(void){

struct book_s mybook;

return 0;

}

Something interesting to

take note with structures

is that the component are

stored together in adjacent

memory cells. Also take

note that first component

title and mybook itself is

the same address.

19

Typedef Structures

• As you may of saw, every
time we must use struct
(such as a declaration), we
are required to type out the
keyword struct.

• C provides a special
keyword that will allow
programmers to avoid using
the struct keyword.

• typedef is a special
keyword that allows C to
assign a name to some type.

#define MAX 30
typedef struct{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
}book_t;

int main(void){

book_t mybook;

strcpy(mybook.title, "Julius Cesar");
strcpy(mybook.author, "William Shakespeare");
strcpy(mybook.title, "Play");
mybook.isbn = 1234;

return 0;

}

• Hierarchical structures are a structures containing
components that are also structures.

20

Hierarchical Structures

typedef struct{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
}book_t;

typedef struct{

 char name[MAX];
 book_t mycollection[100];

}library_t;

• Since structures are basically
special variables, we can also use
them as input/output parameters
for user defined functions.

• We can perform both pass-by-
value and pass-by-reference.

• With structures it is preferred that
they are passed by reference
since it easier (on the stack
space) to pass the address (8
bytes always) of the struct rather
than coping all the values of each
component (number of bytes
varies but could most likely be
bigger than 8).

21

Structs and Function Parameters

void displayBook(book_t mybook){
 printf("%s\n, mybook.title");
 printf("%s\n, mybook.author");
 printf("%s\n, mybook.subject");
 printf("%s\n, mybook.isbn");
}

void displayBook(book_t *mybook){
 printf("%s\n, mybook.title");
 printf("%s\n, mybook.author");
 printf("%s\n, mybook.subject");
 printf("%s\n, mybook.isbn");
}

Pass by Value

Pass by Reference

• The indirect component selection operator is the
character sequence -> placed between a pointer variable
and a component name create a reference that follows
the pointer to a structure and selects the component.

• While first one is valid to use, it can be a bit cumbersome
to use, which is why C provides the indirect operator.

22

Indirect Component Selection Operator

book_t *book_ptr = &mybook;

char title[MAX] = (*book_ptr).title;
char title2[MAX] = book_ptr->title;

• The indirect component selection operator is the
character sequence -> placed between a pointer variable
and a component name create a reference that follows
the pointer to a structure and selects the component.

• While first one is valid to use, it can be a bit cumbersome
to use, which is why C provides the indirect operator.

23

Indirect Component Selection Operator

book_t *book_ptr = &mybook;

char title[MAX] = (*book_ptr).title;
char title2[MAX] = book_ptr->title;

Course Logistics

24

Some Common Struct Usages

25

Functions that Return Structs

book_t getBook(){
 book_t book;

 scanf("%s", book.title);
 scanf("%s", book.author);
 scanf("%s", book.subject);
 scanf("%d", book.isbn);

 return book;

}

26

Arrays of Structs

book_t book_array[100];

27

Arrays of Structs

book_t book_array[100];

Components .title .author .subject .isbn
mybook[0] … … … …

mybook[1] … … … …

mybook[2] … … … …

… … … …

mybook[99] … … … …

28

Traversing an Array of Structs

void displayLibrary(book_t mybook[]){
 for (int x = 0; x < 100; x++){
 printf("%s\n", mybook[x].title);
 printf("%s\n", mybook[x].author);
 printf("%s\n", mybook[x].subject);
 printf("%d\n", mybook[x].isbn);
 }
}

Course Logistics

29

Demo

30

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

