
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 12- Class II:
Dynamic Memory
Allocation - Part 1

• SPA 3 now due today. - Python script out.

• SPA 4 and LPA 2 have been released, are be due on
November, 10th (Friday), and November 17th respectively.

• SPA 4 Python script coming today.

• Mid-Semester Feedback Survey will be posted today.

• Please complete to count as a quiz grade.

• No Class on Friday this week (Veterans Day)!

• Office Hours Directly After Class today (visitor to CS
Dept.)

2

Administrivia

1. Demo of Structs

2. Intro to Dynamic Memory Allocation in C

3

Today’s Agenda

Course Logistics

4

Review

5

User Defined Structure Syntax

#define MAX 30

struct book_s{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
};

struct keyword

Component
Members/Fields

Name of struct

6

Precedence and Associativity of Operators

Precedence Symbols Operator Associativity

Highest a[j]	f(…) Subscripting, function calls, direct component selection Left

++	— Postfix increment and decrement Left

++	—	!	-	+	&	* Prefix increment and decrement, logical not, unary negation
and plus, address of, indirection

Right

(type	name)	 Casts Right

*	/	% Multiplicative operators (multiplication, division, remainder) Left

+	- Binary additive operators (addition and subtraction) Left

<	>	<=	>= Relational Operators Left

!=	=	 Equality/ Inequality Operators Left

&& Logical And Left

|	| Logical Or Left

Lowest +=	=	-=	*=	/=	%= Assignment Operators Right

7

Stack Space Visualization with Structs

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 my	book.isbn

AA2 mybook.subject

AA1 mybook.author

AA0 mybook,	my	
book.title	

#define MAX 30

struct book_s{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
};

int main(void){

struct book_s mybook;

return 0;

}

8

Typedef Structures

• As you may of saw, every
time we must use struct
(such as a declaration), we
are required to type out the
keyword struct.

• C provides a special
keyword that will allow
programmers to avoid using
the struct keyword.

• typedef is a special
keyword that allows C to
assign a name to some type.

#define MAX 30
typedef struct{
 char title[MAX];
 char author[MAX];
 char subject[MAX];
 int isbn;
}book_t;

int main(void){

book_t mybook;

strcpy(mybook.title, "Julius Cesar");
strcpy(mybook.author, "William Shakespeare");
strcpy(mybook.title, "Play");
mybook.isbn = 1234;

return 0;

}

Course Logistics

9

Dynamic Memory Allocation

10

Pointer Refresher

• Special data type that holds an address a memory

• * is the deference operator

• & is the address operator

C4

5

0

1

2

3

4

A B C D

int x = 5; //C4
int *ptrx = &x; // C4
printf("%d\n", *ptrx); // 5

11

Pointer Uses we have Observed

Use Implementation

Function Output
Parameters

1. Function formal parameter declared a pointer type
2. Actual parameter in a call is the address of the variable

Arrays (strings)
1. Declaration of array variable shows array size
2. Name of array with no subscript is a pointer: meaning the

address of the initial array element

File Access

1. Variable declared of type FILE* is a pointer to a structure that
is to contain access information for a file.

2. File I/O functions such as fscanf	and fprintf expect as
arguments file pointers of type FILE *.

Function as a
parameter of

another function

1. Declaration may or may note include *
2. Name of a function alone (with no parameter list) is a pointer to

the function’s code

12

Static Memory

• For this entire course, we have been provided by the OS
memory to utilize for our program in the stack space.

• Limitations:

• Cannot change the size we are given

• How can this be potentially bad?

• At compilation time (when code compiles) the memory
allocation for the program is predetermined.

• “Get what you get and don’t get upset!”

13

Dynamic Memory

• Sometimes we may not know how much we really need
for a program.

• Example

• Array Allocation – what if we allocated 5 elements
and realized we need more elements?

• Memory that we can change in size during the program
run (different then compilation time).

• Extra memory that we may need during a program is in
the heap space.

14

sizeof Operator

• Returns the size (in bytes) of a data type

• sizeof(int) returns 4 bytes

• sizeof(double) returns 8 bytes

• sizeof(char) returns 1 byte

15

malloc()

• Part of the stdlib.h file

• Allocates a single memory block of any built in or user-defined type

• Function that returns memory based on the number of bytes needed

• Parameter of the function takes the number of bytes needed

• The function returns an address or NULL

• What kind of variable will hold that address?

• What happens if NULL is returned?

• Heap – region of memory in which the function malloc dynamically
allocates blocks of storage

16

Stack and Heap Space

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 int	*ptr

AA2

AA1

AA0

Heap Space

17

Stack and Heap Space

Stack	 Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3 int	*ptr

AA2

AA1

AA0

Heap

Heap

Stack

Static/Global

Code	(Text)

Program
Memory Allocation

18

malloc	Example

int *pointer;
pointer = malloc(sizeof(int));

19

free()

• After we are done with using our dynamic memory we
have asked for we need to give it back.

• Why do you think we need to give back memory?

• Parameter is an address in memory (POINTERS!)

• Rule of thumb every malloc() call there should be a
free().

20

malloc()	+	free()	Example

int *pointer;
pointer = malloc(sizeof(int));
free(pointer);

21

free()

• After free() is called, the value in the parameter doesn’t
change.

• Only significant is that the memory is labeled free from the
OS perspective

• What do you think this means?

• What should we do with the pointer that is passed in the
function call.

• Set it to NULL!!!

Course Logistics

22

Demo

23

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

