
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 11- Class II:
Strings Part II

• SPA 3 now due on Fri.

• SPA 4 and LPA 2 will come out today, will be due on
November, 8th, and November 15th respectively.

• Exam grades will be released today.

• Mid-Semester Feedback Survey will be posted today.

• Please complete to count as a quiz grade.

2

Administrivia

1. Quick Recap of last Class

2. String Library Functions!

3

Today’s Agenda

Course Logistics

4

Review

5

Reading Input into Arrays (Wrong!)

int num[2];
int num2[2];
int mynum[2];

printf("Enter: ");
scanf("%d", num);
printf("Enter: ");
scanf("%d", num2);
printf("Enter: ");
scanf("%d", mynum);

for(int i = 0; i < 2; i++){

printf("num[%d] = %d\n", i, num[i]);
printf("num2[%d] = %d\n", i, num2[i]);
printf("mynum[%d] = %d\n", i, mynum[i]);

}

This will result in
garbage being saved

to the array after
each first slot.

• Collecting input for a string follows very similar
procedures as collecting other data types.

• Two Differences:

• Placeholder %s

• No address operator (&)

6

Collecting a String with scanf

char pokemon[10];

scanf('%s', pokemon);

printf("the pokemon is %s\n", pokemon);

Why no address
operator needed?

• Collecting input for a string follows very similar
procedures as collecting other data types.

• Two Differences:

• Placeholder %s

• No address operator (&)

7

Collecting a String with scanf

char pokemon[10];

scanf('%s', pokemon);

printf("the pokemon is %s\n", pokemon);

Remember the array
variable is a pointer to the

1st adjacent memory
celling the stack space.

• Strings are just an array characters.

• We can technically form words and even phrases.

• Does a single scanf statement with ONE placeholder
allow multiple words to be collected into some string?

8

Limitations of using scanf for Strings

char pokemon[10];

scanf('%s', pokemon);

printf("the pokemon is %s\n", pokemon);

• Strings are just an array characters.

• We can technically form words and even phrases.

• Does a single scanf statement with ONE placeholder
allow multiple words to be collected into some string?

9

Limitations of using scanf for Strings

char phrase[30];

scanf('%s', phrase);

printf("the phrase is %s\n", phrase);

What if we type “Super
Mario”?

• Strings are just an array characters.

• We can technically form words and even phrases.

• Does a single scanf statement with ONE placeholder
allow multiple words to be collected into some string?

10

Limitations of using scanf for Strings

char phrase[30];

scanf('%s', phrase);

printf("the phrase is %s\n", phrase);

What if we type “Super
Mario”?

Super Mario	
The phrase is Super

• Strings are just an array characters.

• We can technically form words and even phrases.

• Does a single scanf statement with ONE placeholder
allow multiple words to be collected into some string?

11

Limitations of using scanf for Strings

char phrase[30];

scanf('%s', phrase);

printf("the phrase is %s\n", phrase);

What if we type “Super
Mario”?

Super Mario	
The phrase is Super

Scanf stops reading values for a string when it
encounters the whitespace character (‘ ‘)!

12

Reading Strings into Arrays

char word[8];
printf("Enter: ");
scanf("%s", word);
printf("word = %s\n", word);

13

Reading Strings into Arrays

char word[8];
printf("Enter: ");
scanf("%s", word);
printf("word = %s\n", word);

Why aren’t garbage values being displayed?

The null character!

• C (and even other programming languages) has a buffer
input stream.

• A stream is a sequence of characters.

• Think of it as like a flowing river of incoming characters.

• Buffer is a temporary storage area that stores characters.

• It’s very important to understand that the buffer must always
be empty (meaning no characters are stored) in order to
properly collect input.

• When scanf is used to collect a string, any other character
including the space is still in the buffer.

14

Limitations of using scanf for Strings

Course Logistics

15

More Strings

• getchar is a function in C that retrieves a character
from the buffer standard input stream (stdin).

• The function returns the integer ascii value of the
respective character.

• If the standard input stream is empty, then it is
basically the equivalent of using a scanf statement
that reads a single character.

16

getchar() Function

char ltr = getchar();

• Here is a simple user defined function that you can use
to clear the input buffer.

• This function should be only when the buffer needs to
be cleared. In other words, if your code is skipping an
input collection statement, then that means the buffer
had readable content.

17

Clearing the Input Buffer

void clearBuffer(){
 while(getchar() != '\n');
}

• Something we’ve noticed is that scanf has some
limitations.

• scanf only allows one word to be read.

• How can programmers input a sentence as string?

• gets() is a simple function that allows user to input
more than one word that can be stored in a character
array (allowing whitespaces).

• puts() is another way to display a string onto the
screen.

18

gets() and puts()

19

gets() and puts() Example

char phrase[10];
printf("Enter a phrase: ");
gets(phrase);

puts(phrase);
Enter a phrase: Golden	
Golden

'gets' has been explicitly marked
deprecated here
__deprecated_msg("This function is
provided for compatibility reasons only.
Due to security concerns inherent in the
design of gets(3), it is highly
recommended that you use fgets(3)
instead.")

• fgets() is similar to gets(), but with extra syntax.

• fgets() meets the possible that gets() raises.

• fgets() takes three arguments

• Array

• String Length Limit

• File to read from (stdin which is standard input)

• fputs() works like puts(), except that it doesn’t
automatically append a newline

20

fgets()

21

fgets() Example

char phrase[10];
printf("Enter a phrase: ");
fgets(phrase, 10, stdin);

printf("The phrase is %s\n", phrase);

Enter a phrase: The bus	
The phrase is The bus

22

fgets() Example

char phrase[10];
printf("Enter a phrase: ");
fgets(phrase, 10, stdin);

printf("The phrase is %s\n", phrase);

Enter a phrase: Super Duper	
The phrase is Super Dup

• fgets is a function that allows to process characters
(including a whitespace characters) until newline
character (‘\n’) is read

• If fgets receives a strings bigger than the provided
limit, it will just append the null character in the last
element and send the remaining characters into the
buffer space

23

Understanding how fgets() works

24

fputs() Example

char phrase[10];
printf("Enter a phrase: ");
fgets(phrase, 10, stdin);

fputs(phrase, stdout);

Enter a phrase: Super Duper	
Super Dup

25

The String library

• Strings has a library devoted to strings.

• The library contains a series of functions that can
manipulate or access certain content about strings.

• All functions associated with strings are stored in the
string header file (string.h)

• Since they are stored in separate header file, make
sure to include it!!

#include<string.h>

26

The String library

Function Stack Space

strcpy() Makes a copy of source, a string, in the character array accessed by dest:

strncpy() Makes a copy of up to n characters from source in dest: strncpy(dest, source, 5) stores the first five characters
of the source and does NOT add a null character.

strcat() Appends source to the end of dest: strcat(dest, source)

strncat() Appends up to n characters of source to end of dest, adding the null character if necessary.

strcmp() Compares s1 and s2 alphabetically. Returns a negative value if s1 should precede s2, a zero if strings are equal,
and a positive value if s2 should precede s1 in an alphabetized list. strcmp(s1,s2)

strncmp() Compares the first n characters in s1 and s2 returning positive, zero, and negative values like strcmp.

strlen() Returns the number of characters in s, not counting the terminating null. strlen(s)

strtok() Breaks the parameter string into tokens finding groups of characters separated by any of the delimiter
characters. Each group is separated with ‘\0’.

strchr() Returns a pointer to the first location of a character located in the string. Null is returned if character is not
found.

strpbrk() Return a pointer to the first location in the strings that holds any character found in another string.

strchr() Returns a pointer to the last occurrence of a character in the string. Null is returned if character not found.

strstr() Returns a pointer to the first occurrence of string s2 in string s1. Null is returned if character not found.

Course Logistics

27

Demo

28

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

