
COP 3223H:
Introduction to
C Programming

University of
Central Florida

Fall 2023

Dr. Kevin Moran

Week 10 - Class 1:
Exam 2 Review

• Small Programming Assignment 3 due Friday
October 27th.

• Quiz 1 is due Today at 11:59 pm

• Exam 1 is Wednesday. October 25th!

• We will review the format and content extensively
today.

2

Administrivia

1. One more array topic

2. Exam Review

3

Today’s Agenda

• 2 Parts, In-class exam, closed book, 100 points total

• Part 1: Short Answer Questions

• 4-5 questions

• Either provide program output or answer with a code snippet or a few
short sentences.

• Part 2: Programming Questions

• 4-5 questions with multiple parts

• Either provide the output of a more complex program, or write several
lines of code

• Focused on material from Weeks 6-9, but this builds on concepts from
Weeks 1-5.

• You will have the entire class period to complete the exam

• Please bring your UCF ID to the exam
4

Exam 2 Format

Course Logistics

5

Reading Input into Arrays

6

Reading Input into Arrays (Wrong!)

int num[2];
int num2[2];
int mynum[2];

printf("Enter: ");
scanf("%d", num);
printf("Enter: ");
scanf("%d", num2);
printf("Enter: ");
scanf("%d", mynum);

for(int i = 0; i < 2; i++){

printf("num[%d] = %d\n", i, num[i]);
printf("num2[%d] = %d\n", i, num2[i]);
printf("mynum[%d] = %d\n", i, mynum[i]);

}

This will result in
garbage being saved

to the array after
each first slot.

7

Reading Input into Arrays

#include<stdio.h>

void readInArray(int arr[], int size);

int main(void){

int arr[2];

readInArray(arr, 2);

}

void readInArray(int arr[], int size) {
 int i;
 printf("Enter your list of numbers: ");
 for (i = 0; i < size; i++) {
 scanf("%d", &arr[i]);
 printf("%d\n", arr[i]);
 }
}

To read in values
properly, create a for

loop, and iterate
through each

element in the array.

8

Reading Strings into Arrays

char word[8];
printf("Enter: ");
scanf("%s", word);
printf("word = %s\n", word);

Note the behavior here is
slightly different…

We can read multiple
characters into the array at

one.

This is special for strings.

However, there
are still issues with this

code.

For example, what if more
than 8 chars are entered?

What if multiple words are
entered?

Course Logistics

9

Midterm Exam Review

Course Logistics

10

Week 6 - Class I: Loops Part I

11

Different Kinds of Loops

Comparison of Different Loop Types

Type When to Use C Implementation

Counting Loop When you know the number
of iterations the loop will

need.

while, for

Sentinel Controlled Loop Input a list of data of any
length ended by a special

value.

while, for

Endfile-controlled Loop Input any list of data of any
length from a data file.

while, for

Input Validation Loop Repeated interactive input of
a data value until this value is

within the desired range

do-while

General Conditional Loop Repeated processing of data
until a desired condition is

met

while, for

Code inside the
control structure is

evaluated if the
condition was true

First condition is
evaluated

12

Understanding the While Loop Flow

while(condition)
{
 // instructions go here
}

13

Continue Statement

• There is a special
keyword in C called
continue that can cause
an iteration to be skipped.

• What will the code
fragment display?

• Why does this even exist?

• In larger programs,
there might be special
iterations where a
certain set values may
be invalid to use.

int num = 10;

while(num > 0){
 if(num ==5){
 num -= 1;
 continue;
 }

 printf("Continue: num=%d\n.", num);

 num -= 1;

}

14

Compound Assignment Operators

• You may have noticed instructions where variable have
assignment statement that involves itself.

• var1 = var1 + 1;

• var2 = var2 – 2;

• C, this can be rewritten as a compound statement.

• +: += e.g., var1 += 1;	

• -: -= e.g., var2 -= 2;	

• *: *= 	

• /: /= 	

• %: %=

15

Examples of Compound Assignment Operators

Compound Assignment Operators

count_emp = count_emp + 1; count_emp += 1;

time = time – 1; time −= 1;

total_time = total_time +
times; total_time += times;

product = product ∗ item; product ∗= item;

n = n ∗ (x + 1); n ∗= (x + 1);

16

Operator Precedence

Operator Precedence

function calls Highest
! + - & (unary)

operators)* / %
+ -

< <= >= >
!= ==
&&
||

(=, +=, -=, *= …) Lowest

Course Logistics

17

Week 6 - Class II: Loops Part 2

int num_iters = 10;

for(int count = 0; count < num_iters; count ++){

 // Do stuff here

}

18

The For Statement

Initialization Loop Repetition
Condition

Update

int num_iters = 10;

for(int count = 0; count < num_iters; count ++){

 // Do stuff here

}

19

For Loop Control Flow

1 2

3

4

20

Increment and Decrement Operators

• C provides an alternative when writing an increment and
decrement by 1 statement.

• counter = counter + 1; can be rewritten as counter++;

• counter = counter – 1; can be rewritten as counter--;

• Pre increment/ Pre decrement (--counter;)

• Post increment/Post decrement (counter++)

21

Nested Loops

• The past examples we have only observed one loop.
However, it is possible to have loops within loops (nested
loops)

• Nested loops have the following terminology:

• Outer loop

• Inner loop for(int x = 0; x < 5; ++x){ // Outer Loop

 for(int y = 0; y < 2; ++y){ // Inner Loop

 printf("x = %d\n", x);
 printf("y = %d\n", y);
 }

}

22

Do-While Loop Example

char letter_choice;

do{

printf("Enter a latter from A through E: ");
scanf(" %c", &letter_choice);

}while(letter_choice >= 'A' && letter_choice <= 'E');

1

2

Course Logistics

23

Week 6 - Class III: Pointers Part I

24

What are Pointers?

• Pointers are variables that store the address of a memory
cell that contains a certain data type.

• * indicates that variable holds a memory location of certain
type

• & is the address

int m = 25; // stored in address AA0

 int *itemp = &m;

Stack Space
AA3
AA2
AA1 itemp = AA0
AA0 m = 25

25

Examples of Pointers

 int *ptr; // Points to a memory cell holding an int value
 double *ptr2; // Points to a memory cell holding a double value
 char *ptr3; // Points to a memory cell holding a double value
 float *ptr4; // Points to a memory cell holding a float value

26

Why Use Pointers?

• To pass arguments by reference (e.g., easily share information between
functions)

• For accessing array elements

• To return multiple values

• Dynamic memory allocation

• To implement data structures

• To do system-level programming where memory addresses are useful

27

With Great Power…

• If pointers are pointed to some incorrect location then it may end up
reading a wrong value.

• Erroneous input always leads to an erroneous output

• Segmentation fault can occur due to uninitialized pointer.

• Pointers are slower than normal variable

• It requires one additional dereferences step

• If we forgot to deallocate a memory then it will lead to a memory leak.

28

Indirect Referencing

• Indirect reference is accessing the contents of a memory
cell through a pointer variable that stores its address.

• This is known as the dereference operator.

int m = 25; // stored in address AA0

 int *itemp = &m;

 *itemp = 14;

Stack Space
AA3
AA2
AA1
AA0 m = 25

Here

29

Indirect Referencing

• Indirect reference is accessing the contents of a memory
cell through a pointer variable that stores its address.

• This is known as the dereference operator.

int m = 25; // stored in address AA0

 int *itemp = &m;

 *itemp = 14;

Stack Space
AA3
AA2
AA1 itemp = AA0
AA0 m = 25

Here

30

Indirect Referencing

• Indirect reference is accessing the contents of a memory
cell through a pointer variable that stores its address.

• This is known as the dereference operator.

int m = 25; // stored in address AA0

 int *itemp = &m;

 *itemp = 14;

Stack Space
AA3
AA2
AA1 itemp = AA0
AA0 m = 14

Here

31

The Dreference Operator *

• We have seen so far in this course that everything is
stored somewhere in memory.

• Each memory has its own unique address.

• The pointer variable holds the specific address.

• The dereference operator acts like a “magic key” that
allows access to the value stored.

• * is known as deference in C.

32

The Address Operator &

• We have been using & in our programs ever since scanf was introduced.

• & means address of

• Holds a value in hexadecimal that represents the location in
memory.
• This done with the placeholder %p.
• Hexadecimal is a base 16 number. This means there are 16 unique
digits.

• Think about it. Every time we used scanf(“%d”, &num) we were telling
the compiler to store the value at the Memory Address of the variable
named num.

33

The Pointer Placeholder %p

• There exists a special placeholder that can display the
memory address of a reference.

 int m = 25; // stored in address AA0

 int *itemp = &m;

 printf("The address of m is %p\n", &m);
 printf("The address of itemp is %p\n", &itemp);
 printf("itemp holds the value %p\n", itemp);

34

Pointer Example

int a = 1;
 int b = 2;
 int c = 3;
 int *p;
 int *q;

 p = &a; // set p to refer to a
 q = &b; // set q to refer to b

35

Pointer Example

int a = 1;
 int b = 2;
 int c = 3;
 int *p;
 int *q;

 p = &a; // set p to refer to a
 q = &b; // set q to refer to b

 c = *p; // retrieve p's pointee value (1) and put it in c
 p = q; // change p to share with q (p's pointee is now b)
 *p = 13; // dereference p to set its pointee (b) to 13 (*q is now 13)

Course Logistics

36

Week 7 - Class I: Pointers Part II

• Pointers that we have seen hold an address.

• Can pointers hold a value that doesn’t represent an address in
memory?

• The simple answer is YES!

• NULL (or NIL) is a special value that represents nothing.

• We will see more of the value NULL being utilized when discussing
dynamic memory.

37

The NULL/NIL Value

int *ptr = NULL;

Stack Space
AA3
AA2
AA1
AA0 ptr = NULL

• In past sessions, we have seen that variables have
been passed by value.

• With pointers, we can now past variables by reference.

• Instead of making a local copy for the function, we can
pass the memory location and perform computation
on the variable in its original location. This is known as
pass-by-reference.

38

Functions with Parameters

#include<stdio.h>

void myFunction (int numl, int num2, int num3);

int main()
{
int num1 = 3;
int num2 = 2;
int num3 = 1;
printf (“num1 = %d\n", num1);
printf ("num2 = %d\n", num2);
printf ("num3 = %d\n", num3);

myFunction (num1, num2, num3);

printf ("num1 = %d\n", num1);
printf (“num2 = %d\n", num2) ;
printf ("num3 = %d\n", num3);
return 0;
}

void myFunction (int num1, int num2, int num3)
{
num1 = 5;
num2 = 8;

printf ("num1 = %d\n", num1);
printf ("num2 = %d\n" , num2);
printf ("num3 = %d\n", num3);
}

Pass By Value Example

39

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0

Stack Space

Here

#include <stdio.h>

void increaseValue(int *num);

int main(void){

int num = 13;

 printf("num = %d\n", num);

 increaseValue(&num);

 printf("num = %d\n", num);

 return 0;

}

void incraseValue(int *num){
 *num = *num + 1;
}

Pass By “Reference” Example

40

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0

Stack Space
Here

#include <stdio.h>

void increaseValue(int *num);
void calculate();

int var; // global variable BAD!!

int main(void){

int num = 13;

 printf("num = %d\n", num);

return 0;

}

void calculate(){

 int num1; // local variable
 int num2; // local variable
 scanf("%d%d", &num1, &num2);

 int result = num1 + num2;

}

• Scope of a name refers to the
region in a program where a
particular meaning of a name is
visible.

• Local and Global Variables

• When variables are being used,
certain functions may not be
able to access them due to
where they were declared!

• Why can’t everything be
global? Would that be easier?

41

Scope of Names

Course Logistics

42

Week 8 - Class I: File I/O

• In C we can access files (such as text files)

• This access allows for reading and writing.

• Reading – Input

• Writing – Output

• There is a special kind of variable in C that allows us access for
text files.

• File Pointers!

43

Files

FILE *inp; // pointer to input file
FILE *outp; // pointer to output file

• There are two basic types of access we will learn in this
class

• Reading – this allows the program to collect input
from a text file. Think of it like scanf for collecting
input from the keyboard

• Writing – this allows the program to write output to a
text file. Think of it like printf for displaying output to
the monitor

44

File Pointer Access

• There are other modes for FILE I/O Access besides r and w mode.

• a – append mode

• Adds content to the next available space in the File

• r+ – both reading and writing

• Acts as both r and w mode. Assumes that File exists in memory

• If file does not exist then it doesn’t work

• w+ – both reading and writing

• Acts as both and w mode. Doesn’t assume that File exist in memory

• If it does exist already, content will be deleted by setting the length to zero bytes

• If it doesn’t exist, it will create the File

• a+ – both reading and writing

• If file doesn’t exist, it will create it

• When reading, pointer starts at the beginning of the file content

• Writing to file will only be appended
45

Other Types of File I/O Access

46

Syntax for File Reading/Writing

// preparing files for input and output
inp = fopen("indata.txt", "r");
outp = fopen("outdata.txt", "w");

fscanf(inp, "%lf", &item); // reading file
fprintf(outp, "%f", item); // writing file

47

printf, scanf, fprintf, and fscanf

FILE *inp; // pointer to input file
FILE *outp; // pointer to output file

// preparing files for input and output
inp = fopen("indata.txt", "r");
outp = fopen("outdata.txt", "w");

scanf("%lf", &item); // reading input from command line
fscanf(inp, "%lf", &item); // reading input from file

printf("%f", item); // printing information to command line
fprintf(outp, "%f", item); // writing file

fclose(inp);
fclose(outp);

{

{

Notice the
placeholder
and variable

address

Notice the
placeholder
and variable

The only
addition is the

file pointer!

• C has a special predefined macro constant called EOF in the
stdio header file.

• EOF stands for “End Of File”

• The value of EOF is −1. 0 is still used if it can read something
potential, BUT wasn’t processed successfully.

• EOF is widely used to assist with reading an ENTIRE file.

48

EOF Macro Constant

FILE *inp = fopen("indata.txt", "r");

int item;

while(fscanf(inp, "%lf", &item) != EOF){

 printf("item = %d\n", item);

}

fclose(inp);

• After you done accessing the file for reading or writing you
must CLOSE the file.

• If you forget to close the file, the program will still run BUT
leaves files open with access.

• It’s a common mistake beginners make. Remember after
opening to close the files.

49

One Last Thing…

fclose(inp);
fclose(outp);

Course Logistics

50

Week 8 - Class II: Arrays Part I

• An Array is a collection of data items of the same type.

• An array element is a data item that is part of an array.

• An array is a collection of two or more adjacent
memory cells.

51

Arrays

4 2 46 3 8 55 3
0 1 2 3 4 5 6

Array Element

52

Declaring an Array

int x[8];

Type of values
stored in array Identifier

Number of
elements

53

Arrays and Stack Visualization

int x[8];

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0

Here we have an array
(called x) of 8 elements.
That means there are 8
adjacent cells occupied.

Course Logistics

54

Week 8 - Class III: Arrays Part II

• Now that we have observe the stack space visualization of
arrays, we now have to understand how values are
accessed.

• Subscripted variable are variables followed by a subscript
in brackets, designating an array element.

• Array subscript is a value or expression enclosed in
brackets after the array name, specifying which array
element to access.

55

Accessing Values

4 2 46 3 8 55 3
x[0] x[1] x[2] x[3] x[4] x[5] x[6]

Array x

56

Arrays and Stack Visualization

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4 arr[4] = ??

AA3 arr[3] = ??

AA2 arr[2] = ??

AA1 arr[1] = ??

AA0 arr[0] = ??

int arr[5];

for(int x = 0; x < 5; x++){

 arr[x] = x * 3;

}

Here

57

Useful Statements for Array Access

Statement Explanation

printf(“%d,x[0]); Displays the stored value at x[0]

x[3] = 1; Stores the value 1 in x[3]

sum = x[0] + x[1]; Stores the sum of x[0] and x[1]

sum += x[2]; Adds x[2] to sum

x[3] +=13; Adds 13 to x[3]

x[2] = x[0] + x[1] Adds the values stored in x[0] and x[1].

• Like variables, arrays must be declared and initialize.

• In order to declare an array, programmers must specify the type
of data it holds along with the predefined size.

• Programmers can also declare and initialize an array in one line
of code (programmers don’t have to include the size if this
method is done).

• When an array is declared, what values are automatically stored?

58

Array Initialization

int arr[5]; // What is stored inside memory after declaration

• Like variables, arrays must be declared and initialize.

• In order to declare an array, programmers must specify the type
of data it holds along with the predefined size.

• Programmers can also declare and initialize an array in one line
of code (programmers don’t have to include the size if this
method is done).

• When an array is declared, what values are automatically stored?

59

Array Initialization List

int arr[] = {2, 4, 6, 8, 10};

Type Identifier Initialization List

60

Array Initialization List

int arr[] = {2, 4, 6, 8, 10};

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0

61

Array Initialization List

int arr[10] = {2, 4, 6, 8, 10};

for(int x = 0; x < 10; x++){

 printf("arr[%d] = %d\n", x, arr[x]);

}

arr[0] = 2
arr[1] = 4
arr[2] = 6
arr[3] = 8
arr[4] = 10
arr[5] = 0
arr[6] = 0
arr[7] = 0
arr[8] = 0
arr[9] = 0

• int - 0

• double 0.0

• float - 0.0

• char - ‘\0’ Null Character

• pointer - Null

62

Default Values for Different Data Types

• The arrays we are dealing with use static memory (stack space).

• Static means no flexibility in changing the size of memory
required.

• Adding this flexibility results in dynamic memory

• We will study this at the end of the semester.

• Never use variables when declaring an array as you can have
potential danger in what the value a variable can hold.

• VLAs pose danger if we accidentally change a value to a size
that can’t be properly handled in memory.

63

Variable Length Arrays ☹

64

Variable Length Arrays ☹

int size;

printf("Enter the number of elements: ");

scanf("%d", &size);

int arr[size]; // GROSS!

NEVER DO THIS!

Course Logistics

65

Week 9 - Class I: D Arrays Part III

• Subscript are used to access and manipulate array
elements.

• It’s very important to know how to manipulate array
elements.

66

ArraySubscripts

Statement Explanation

x[i-1] = x[i]; Assign the value stored at index i to
index i-1

x[i] = x[i+1]; Assignment the value stored

at index i + 1 to index i

x[i] -1 = x[i] Illegal!

Array Subscript Example

67

Stack Space

AA9 arr[9] = 10

AA8 arr[8] = 9

AA7 arr[7] = 8

AA6 arr[6] = 7

AA5 arr[5] = 6

AA4 arr[4] = 5

AA3 arr[3] = 4

AA2 arr[2] = 3

AA1 arr[1] = 2

AA0 arr[0] = 1

for (int x = 0; x < 5; x++){

 arr[x] = arr[x + 1];

}

Here

• In C, there’s an operator that programmers can use to determine the exact size of the array.

• sizeof() is an operator that is used to determine the size of a variable allocated for
memory.

• Integer: 4 bytes

• Double: 8 bytes

• Character: 1 byte

• Float (in Eustis): 4 bytes

• Pointer: 8 bytes

• This operator can be used to determine the number of elements in a predefined array.

68

sizeof() Operator

int size = sizeof(arr)/sizeof(arr[0]);

• We understand how arrays are declared, initialize, and
accessed.

• How can arrays be used with other functions?

• Like variables, programmers can pass arrays to other functions.

• Something interesting about arrays are that they are memory
addresses.

• What kind of pass-by does that handle?

69

Using Array Elements as Function Arguments

• Function prototype
shows we are
passing an array

• What does C pass
arrays by
reference?

• It is Far more
efficient to always
pass a pointer than
to pass a copy of
the entire array!

70

Using Array Elements as Function Arguments

#include<stdio.h>
define SIZE 10

void fillArray(int list[], int val);

int main(void){

int list[SIZE];

fillArray(list, SIZE);

for(int i = 0; i < SIZE; i++){
 printf("arr[%d] = %d\n", i, list[i]);
}

return 0;
}

void fillArray(int list[], int val){

 for(int i = 0; i < sizeof(list)/sizeof(list[0]); i++){
 list[i] = val;
 }

}

• In this code, you
might notice that
sizeof() operators
are being used to
calculate the # of
elements.

• However, there is
an issue with this
code and we will
get a compiler
warning!

71

Using Array Elements as Function Arguments

#include<stdio.h>

void displayArray(int list[]);

int main(void){

int list[5];

for(int i = 0; i < 5; i++){
 list[i] = i + 1;
}

displayArray(list);

return 0;
}

void displayArray(int list[]){

 for(int i = 0; i < sizeof(list)/sizeof(list[0]); i++){
 printf("list[%d] = %d\n", i, list[i]);
 }

}

warning: sizeof on array function parameter will return size of 'int *' instead of
'int[]' [-Wsizeof-array-argument]

• In this code, you
might notice that
sizeof() operators
are being used to
calculate the # of
elements.

• However, there is an
issue with this code
and we will get a
compiler warning!

• Remember a pointer
is 8 bytes, and an
integer is 4 bytes.

72

Using Array Elements as Function Arguments

#include<stdio.h>

void displayArray(int list[]);

int main(void){

int list[5];

for(int i = 0; i < 5; i++){
 list[i] = i + 1;
}

displayArray(list);

return 0;
}

void displayArray(int list[]){

 for(int i = 0; i < sizeof(list)/sizeof(list[0]); i++){
 printf("list[%d] = %d\n", i, list[i]);
 }

}

warning: sizeof on array function parameter will return size of 'int *' instead of
'int[]' [-Wsizeof-array-argument]

• What happens if
we run this code?

• What is going
on??

73

Using Array Elements as Function Arguments

#include<stdio.h>

void displayArray(int list[]);

int main(void){

int list[5];

for(int i = 0; i < 5; i++){
 list[i] = i + 1;
}

displayArray(list);

return 0;
}

void displayArray(int list[]){

 for(int i = 0; i < sizeof(list)/sizeof(list[0]); i++){
 printf("list[%d] = %d\n", i, list[i]);
 }

}

Legacy:code KevinMoran$./arrays
list[0] = 1
list[1] = 2
Legacy:code KevinMoran$

Course Logistics

74

Week 9 - Class II: 2-D Arrays Part I

• We have seen that arrays can be useful, but what if we
need to store multidimensional data?

• 2D-Arrays to the rescue!

• 2D Arrays allow us to store information in a matrix-like
format, as shown below.

75

2D Arrays

Example of a 2-D Array
of Characters

0 1 2 3

0 a s d f
1 n k i v

2 h j k l

3 f e o p

76

Declaring a 2D Array

int x[8][10];

Type of values
stored in array Identifier Number of row

elements

Number of
column elements

77

Accessing Array Elements

int arr[3][3] = { {24, 15, 34}, {26, 134, 194}, {67, 23, 345} };

0 1 2

0 24 15 34

1 26 134 194

2 67 23 345

int test_val = arr[1][0];

printf("First element in second row is: %d\n", test_val);

Course Logistics

78

Week 9 - Class III: 2-D Arrays Part II

79

2D-Array Stack Visualization

Stack Space
AA9

AA8

AA7

AA6

AA5

AA4

AA3

AA2

AA1

AA0

int arr[3][3] = { {24, 15, 34},
 {26, 134, 194},
 {67, 23, 345} };

for(int i =0; i < 3; i++){
 for(int j = 0; j < 3; j ++){
 printf("arr[%d][%d] value is: %d\n",
 i,j,arr[i][j]);
 }
}

Here

80

Acknowledgements

Slides adapted from Dr. Andrew Steinberg’s
COP 3223H course

