CEN 501 é:

Software
-ngineering

Spring 2026

University of
Central Florida

&

Dr. Kevin Moran

Week 5 - Class I:

Static &

Dynamic

Analysis

Administrivia (&

e Assignment 3

e Due tomorrow, Weds, Feb 11th

e Small Extension due to GitHub issues

e SDE Project Part 1
e Due Friday, Felb 13th

* Project Teams will be finalized in web courses
today!

Software Architecture &

——————————————————————————————————————

Why Document Architecture? &

® Blueprint for the system
o Artifact for early analysis
e Primary carrier of quality attributes
o Key to post-deployment maintenance and enhancement

e Documentation speaks for the architect, today and 20
years from today

® As long as the system is built, maintained, and evolved
according to its documented architecture

® Support traceability.

Views & Purposes &

® Fvery view should align with a purpose

® ¢ \/iews should only represent information relevant to that purpose
® Abstract away other details
® Annotate view to guide understanding where needed

® o Different views are suitable for different reasoning aspects (different quality
goals), e.qg.,

® Performance
e Extensibility
® Security

e Scalability

Common Views in Documenting Software Architecture

e Static View

® Modules (subsystems, structures) and their relations
(dependencies, ...)

® Dynamic View

® Components (processes, runnable entities) and
connectors (messages, data flow, ...)

e Physical View (Deployment)

® Hardware structures and their connections

Common Software Archrtectures (€

|. Pipes & Filters g(ﬁ

= =<l

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

Pipes & Filters Example: Compllers

&

10

Languag

e 1 source code =w=f.anguage 2 source code

Compiler front-end for language 1 Compiler front-end for language 2

Generator

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Non-optimized intermediate code

Non-optimized intermediate code

Intermediate code optimizer

Optimized intermediate code

/ \

Target-1
Code Generator Code Generator

Target-2

lTarget-l machine code

[B -
= x| P

lTarget-Z machine code

«p

2. Object Oriented Organization

&

Proc call
\O
obj is a manager

op is an invocation

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

11

3. BEvent-

Driven Architecture

&

Producer 1

P Event broker

Consumer 1
subscribed to A

Producer 2 *

Consumer 2
subscribedto A+ B

Consumer 3
Subscribed to B

12

Example: HTML

DOM + Javascript

&

13

4. Blackboard Architecture

&

Direct access

~

ks7

Computatlon
Blackboard

(shared)
CON

data)
- Memory

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

14

>. Layered Systems @)

Usually
procedure calls

Useful Systems

Composites of
various elements

Users

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

15

Example Internet Protocol Suite

&

Data

UDP | UDP
header| data

IP
header

IP data

Frame
header

Frame data

Frame
footer

Application

Transport

Internet

Link

16

Guidelines for Selecting a Notation

&

17

Suitable for purpose
Often visual for compact representation
Usually boxes and arrows
UML possible (semi-formal), but possibly constraining
e Note the different abstraction level — Subsystems or processes, not classes or objects
Formal notations available
Decompose diagrams hierarchically and in views
Always include a legend
Define precisely what the boxes mean
Define precisely what the lines mean
Do not try to do too much in one diagram
e Each view of architecture should fit on a page

e Use hierarchy

Software QA Static & Dynamic Analysis &

18

Learning Goals &

® (Gain an understanding of the relative strengths and
weaknesses of static and dynamic analysis

® —xamine several popular analysis tools and understand
their use cases

® Understand how analysis tools are used in large open-
source software

19

Activity: Analyze the Python Program Statically

(n: int, b: int) -> str:

1. What are the set of data types taken

n<= . .. e
= by variable u at any point in the
- program®?
n>u: 2. Can the variable u be a negative
u=n%»>b number?
u>= 10: _— .
u = chr(ord('A') + u - 10) 3. W||II tkrm;s function always return a
r=str(u) +r 4. Can there ever be a division by zero?

r
5. WIll the returned value ever contain a

minus sign ‘-’7?

Answer: Yes, No, Maybe

20

What Static Analysis Can & Cannot Do

&

Type-checking is well established
e Set of data types taken by variables at any point

e Can be used to prevent type errors (e.g. Java) or warn about potential type errors (e.g.
Python)

Checking for problematic patterns in syntax is easy and fast
® |s there a comparison of two Java strings using =="?

® |s there an array access afi] without an enclosing bounds check for i'?

Reasoning about termination is impossible in general

e Halting problem

Reasoning about exact values is hard, but conservative analysis via abstraction is possible
® |s the bounds check before "afi] guaranteeing that | is within bounds?
e Can the divisor ever take on a zero value?
e Could the result of a function call be '42°?
o Will this multi-threaded program give me a deterministic result?

® Be prepared for “MAYBE”

 \erifying some advanced properties is possible but expensive

21

e Cl-based static analysis usually over-approximates conservatively

Bad News: Rice’s [heorem

&

® Fvery static analysis is necessarily incomplete,
unsound, undecidable, or a combination thereof

® “Any nontrivial property about the language recognized
by a Turing machine is undecidable.”

e Henry Gordon Rice, 1953

22

Static Analysis i1s Well-Surted to Detecting Certain Defects

23

Security: Buffer overruns, improperly validated input...

Memory safety: Null dereference, uninitialized data...

Resource leaks: Memory, OS resources...

API Protocols: Device drivers; real time libraries; GUI frameworks
Exceptions: Arithmetic/library/user-defined

Encapsulation:
e Accessing internal data, calling private functions...

Data races:
e [WO threads access the same data without synchronization

Static Analysis Tools: Broad Classification (¢

® | inters
e Shallow syntax analysis for enforcing code styles and formatting

® Pattern-based bug detectors
e Simple syntax or APl-lbased rules for identifying common
programming mistakes

® [ype-annotation validators
e Check conformance to user-defined types
e Types can be complex (e.g., “Nullable”)

e Data-flow analysis / Abstract interpretation)
e Deep program analysis to find complex error conditions (e.g.,
can array index be out of bounds?”)

24

Static Analysis Tools: Applications

&

25

Find bugs

Refactor code

Keep your code stylish!

|dentity code smells

Measure quality

Find usability and accessibility iIssues

|[dentity bottlenecks and improve performance

Activity: Analyze the Python Program Dynamically

(n: int, b: int) -> str:
n<=0:;:

-
n>u.
u=n%Db
U >=

u = chr(ord('A) + u -

n=n//b
r=str(u) +r
r

n2s(,))

Answer: Yes, No, Maybe

26

. What are the set of data

types taken by variable u at
any point in the program?

. Did the variable u ever

contain a negative number”?

. For how many loop

executions did the while loop
execute”?

. Was there a division by zero”

. Did the returned value ever

contain a minus sign ‘-’?

Dynamic Analysis Reasons about Program Executions

® TJells you properties of the program that were definitely
observed

® Code coverage

® Performance profiling
® [ype profiling

® [esting

* |n practice, implemented by program instrumentation

® Think “Automated logging”

® Slows down execution speed by a small amount

27

Static Analysis vs.

Dynamic Analysis

28

® Requires only source code

® (Conservatively reasons
about all possible

® Reported warnings may
contain false positives

® Can report all warnings of a
particular class of problems

® Advanced techniques like
verification can prove certain
complex properties, but
rarely run in Cl due to cost

Requires successful build + test
INputs

Observes individual executions

Reported problems are real, as
observed by a withess input

Can only report problems that
are seen. Highly dependent on
test inputs. Subject to false
negatives

® Advanced techniques like

symbolic execution can prove
certain complex properties, but
rarely run in Cl due to cost

Static Analysis

G .

29

Jools for Static Analysis

&

SYNOPSYS'

0 CS

®

F 1ndBugs

~

09’

Q snyk sonarqube \

30

Static Analysis is a Key

Part of Cl

&

COMMIT

=
CODE
®

X (@ RO,

RELATED CODE

AT :
@ Travis Ci

@] oO—0—-0
BUILD UNIT INTEGRATION
TESTS TESTS

CI PIPELINE

e
&‘ o
kg

GitHub Actions

&
é'\a
)

31

Static Analysis used to be

Purely Academic... &

GitHub acquires code analysis tool Semmle

Frederic Lardinois

ENT+Sef { Types Q s¢

Apps
306 results tlered by Acps «

Zube &
)

T >
Crowdin &

BackHub &

DL e Codacy &

Semaphore &)

“*

Projoct manac t DeepScan @)
v v
Pubishing . -

werkdon wilh sppe Ut indegrale »

e Depfu &
I {
cript code

O GitHub

News

Snyk Secures $150M, Snags $1B
Valuation

0 Sydney Sawaya | Assoclate Editor
& uary 21,2020 1:12 PM

Share this article

00000

e WhiteSource Bolt ()
>
o Slack + GitHub @

- GitLocalize

Code Climate)
L =5 |

Flaptastic @

cations

Snyk, a developer-focused security startup that and Identifies vulnerabllities In open source ap

announced a $150 million Serles C funding round today. This brings the company's total Investment to

$250 million alongside reports that put the company's valuation at more than $1 billion

snyk

32

Static Analysis 1s Also Integrated into IDE

&

of B =

e+« CPPcoreguidelines.cpp

void fill_pointer(intx arr, const int num) {
for(jyt i=0; i<num ++i) {
arr([i] = 0;
1

Do not use pointer arithmetic

void fill_array(int ind) {
int arr(3] = {1,2,3};
arr(ind] = 0;

}
void cast_away_const(const int& magic_num)
{
const_cast<int&>(magic_num) = 42;
}

HHE
bilities: 6 high | 10 medium | 4 low

9 high | 21 medium | 25 low
critical | 66 high | 56 medium | 142 low

H Cross-site Scripting (XSS)

biity

L page returmed to the user

L

ng().index0f{ remindToken) ;
nder + remindToken. length);
lice(, reminder);

This may

33

What Makes a Good Static Analysis Tool? (¢

34

Static analysis should be fast

® Don’t hold up development velocity

® [his becomes more important as code scales

Static analysis should report few false positives

e Otherwise developers will start to ignore warnings and alerts, and quality will decline
Static analysis should be continuous

® Should be part of your continuous integration pipeline

e Diff-lbased analysis is even better -- don’t analyse the entire codebase; just the
changes

Static analysis should be informative
® Messages that help the developer to quickly locate and address the issue

® |deally, it should suggest or automatically apply fixes

(1) Linters

&

 Cheap, fast, and lightweight static source analysis

35

Use Linters to Enforce Style Guidelines

&

36

® Don't rely on manual inspection during code review!

Don’t rely on manual inspection during code review!

gvsvv & RuboCop @

a @, python
=’ Java

Linters Use Very “Shallow’” Static Analysis

&

® [Ensure proper indentation

® Naming convention

® | ine sizes

® (Class nesting

® Documenting public functions

® Parenthesis around expressions

® \\\nat else?

37

Use Linters to Improve Maintainability (¢

e \Why"”? We spend more time reading code than writing it.

® \/arious estimates of the exact %, some as high as
80%

® Code is ownership is usually shared
® [he original owner of some code may move on

® Code conventions make it easier for other developers to
quickly understand your code

38

UseStyle Guidelines to Facilitate Communication

ﬁ Pyen Software Foustatsmn €

PEP 8 -- Style Guide for Python Code

[Rpip e

Style Guidelines

llllllllllllllllllll

The
Chicago
Manual

of Style

® Guidelines are inherently opinionated, but consistency is

the iImportant point. Agree to a set of conventions and

stick to them.

39

Take Home Message: Style I1s an Easy Way to *
Improve Readabllity! @’

® Fveryone has their own opinion (e.g., talbs vs. spaces)
® Agree to a convention and stick to it
® Use continuous integration to enforce it

® Use automated tools to fix issues Iin existing code

40

(2) - Pattern-based Static Analysis Tools

41

Bad Practice

Correctness

Performance
Internationalization
Malicious Code
Multithreaded Correctness
Security

Dodgy Code

RSy
~
o\ L

4L =
TRYLN®

=

F mdBuzs

brecause i's casy

FindBugs Bug Descriptions
This document lists the standard bug patterns reported by FindBugs version 3.0.1
Summary

Description

B' Equals method should not assume anything about the type of its argument

< mmLMLMA m'un.m
Co: compareTol Vcom v handl ”
‘.ug.-xr.ml'x) ;u:w-.\m »Lﬂumslmwx"mns_ (ALUE

. me J; < defined

DML Random oblect
DML Don't use rems

{ \'r.n: ;\.\.

jant equals() method defined

EL_Empty finalizer should be deleted
EL:_Explicit invecation of finalizer
EL Finalizer nuils L-lv.b

El .‘:;L.z"v'.."-.

ML. l.msa d'*txx"a f‘q.m.q | a:xd uses Ub1':< h\uh'.'odf.%)
HE: Class defines hashCt ode() but not equals()
Lm:-- defines mm ode() and uses O

It terator next() method can't throw NoS: 'l‘.E_-"-*'L\ eption
MQMW&J'WMM

JCIp h,r.w' immutable es should be final

M iIC o ethe v sets its fiel

Category
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice
Bad practice

SpotBugs can be Extended with Plugins

Spread the word:
. .
* InsecureBanky2 - [CACode\Android-InsecureBankv2\InsecureBankv2.studio] - [app] - .\app\src\main\java\com\androidiinsecurebank.. - © [IE {X%} Find Securlty Bugs
Ele Edt Yiew Navigate Code Analyze Befactor Build Ryn Jools VC3 Window Help The SpotBugs plugin for security audits of Java web applications (T T
[3 InsecureBankv2_studio ' "3 app * [src » [main) [java » 53 com » [android * £ insecurebankv2) (€ DoTransfer pud~ P & 0L 2 Q
4 B Project v € 5 | % | lass x | € ChangePasswordjava X € CryptoClassjava X | (€ LoginActivityjava X | © DoTransferjava x |~=« o o Download version 1.11.0 Follow the project
g [~ InsecureBankv2_studio try (= Last updated: October 29th, 2 O w1504
= - = e . { 2
“ [idea jsonObject = new JSCNObject (result): g CL L
24 app accl = jsonObject.getString("from"): C1H)
. 7 build acc? = jsonObject.getString("to"); X
5 — Systen.out.println(*Message:" + jsonObject.getString('message’) + " From:" + from.([}
1
§ e final String status - new String("\nMessage:" + "Success” + " From:" + from.getTex . M
= 3 main - try | z
~o [assets i aptures the successful transaction stat action history trackin g §
v [java e String MYFILE - Environment.getZxternalStorageD {).+ "/sStatements " + wl| ¥ Features
[com.android.insecurebankv2 nd ez (new FileWricer M(FILE, true)); - E
: catus) : - 1 » nattarr
® % ChangePassword tue (etacus) ; © 138 bug < Supy ' W %
onr2.clnasiy: - brarie
> 1t can detect ! with over L Plugins are available for
FindBugs-IDEA FindBugs Analysis Results # Lo 820 unique AP over popular frameworks Including Spring-MVC, Strut Command line integration is avaits
; 2 oy ond many mer g
&l InsecureBanky2 ind 14 bug items in 50 classes) more o H
= (3] Security) . =
[static V' (2items External File Access (Android) & &€ Continuous integratior OWASF
@ [*1 Cipher is susceptible to padding oracle attack The application write data to edernal storage (potentially SD card). There are o
(o) [Cipher with no integt multiple security implication to this action. First file store on SD card will be § Canbe usedw nd erences are given fc Ug patterms POn-SOurce and
3 ; (2item = selore Yos
= phet = A° °9’:’d Y accessible o the application having the READ_EXTERNAL_STORAGE permission = eferences to 0 op 10and CW
[atemal File Access (Android), (4 ieem Als0, Ifthe data contains aboutthe user,
B [External File Access (Android) e encryplion would be needed.
o = @ Files could be saved to external storage. Code at risk:
c| € Files could be saved to external storage. £ = =1 Screenshots
sy 3 This gives a longer description of the detected bug pattern
] © Files could be saved to external storage. fo3 = L g 9 = <L . B ——— - — —
= (Gt € Files could be saved to external storage. fos.wr n n ta.ge . . - - 3
2 a [1 WebView with JavaScript Enabled (Android) (1 ite B ; =
[Potential Path Traversal (File Write) (2 ite ' 3 : .
3 Broadcast (Android) (1 ite - P FRIVALE -
B x s r
I ? % References el B =
i CERT: DRD00-J: Do not store sensitive Information on external storage |..] :
* okt N P | hon -
SWTODO & &Android [# Terminal | 4 FindBugs-IDEA Eventlog [F Gradle Console M Memory Monitor e
= 20338 LF: UTF-8: b ;
WASP Find Security Bugs 1.11.0 Created by
Licensed under

42

Challenges

® [he analysis must produce zero false positives
e Otherwise developers won’t be able to build the code!

® [he analysis needs to be really fast

¢ [deally < 100 ms
o [f it takes longer, developers will become irritated and

lose productivity

® You can’t just “turn on” a particular check

—very instance where that check fails will prevent

existing code from
e [here could be thousands of violations for a single

check across large codelbases

43

(3) -Use lType Annotations to Detect Common Errors

® Uses a conservative analysis to prove the absence of certain
defects

® Null pointer errors, uninitialized fields, certain liveness
issues, information leaks, SQL injections, bad regular
expressions, incorrect physical units, lbad format strings, ...

o C.f. SpotBugs which makes no safety guarantees

® Assuming that code is annotated and those annotations
are correct

® Uses annotations to enhance type system

CHECKER

e Example: Java Checker Framework or MyPy ' k
ramewor

44

(3) -Use lType Annotations to Detect Common Errors

® Uses a conservative analysis to prove the absence of certain
defects

® Null pointer errors, uninitialized fields, certain liveness
issues, information leaks, SQL injections, bad regular
expressions, incorrect physical units, lbad format strings, ...

o C.f. SpotBugs which makes no safety guarantees

® Assuming that code is annotated and those annotations
are correct

® Uses annotations to enhance type system

CHECKER

e Example: Java Checker Framework or MyPy ' k
ramewor

45

Taint Analysis g(?)

® [racks flow of sensitive information through the program

® [ainted inputs come from arbitrary, possibly malicious
SOUrces
e User inputs, unvalidated data

® Using tainted inputs may have dangerous
conseguences
e Program crash, data corruption, leak private data, etc.

® \\Ve need to check that inputs are sanitized before
reaching sensitive locations

46

Classic Example: SQL Injection

47

HI, THIS 15

YOUR SON'S SCHOOL.

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR — DID HE
BREAK SOMETHING?

IN A WAY

%4

!

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~OH.YES UTILE
ROBBY TABLES,
WE CALL HIM.

WELL WEVE LOST THIS
YEARS STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
¢ TOSANITIZE YOUR
DATABASE INPUTS.,

Classic Example: SQL Injection

&

void processRequest() {

String input = getUserlnput();
String query = "SELECT ... " + input;
executeQuery(query);

J

48

Classic Example: SQL Injection

&

Tainted input arrives from untrusted source

void processRequest() {
String input = getUserlnput();
String query = "SELECT ... " + input;
executeQuery(query);

J

Tainted output flows to a sensitive sink

49

Classic Example: SQL Injection

&

void processRequest() {
String input = getUserlnput();

Taint iIs removed by sanitizing data

input = sanitizelnput(input);

String query = "SELECT ... " + input;
executeQuery(query);

} We can now safely execute query on untainted data

50

Unit Catastrophe

4

% sl M s CH lE Blog product Solittors Leaming Public Projects Casa Stidies Carcors Pricing Login

P . L

When NASA Lost a Spacecraft Due to

a Metric Math Mistake

Ve s AR READ L TINME
ﬂ Ajay Harish March 10th. 2020 11 Minutes

Blog » CAE Hub > When NASA Lost a Spacecraft Due to a Metric Math Mistake

f In September of 1999, after almost 10 months of travel to Mars, the Mars Climate Orbiter burned

in and broke into pieces. On a day when NASA engineers were expecting to celebrate, the ground
reality turned out to be completely different, all because someone failed to use the right units,
i.e., the metric units! The Scientific American Space Lab made a brief but interesting video on this

very topic.

NASA’'S LOST SPACECRAFT

The Metric System and NASA's Mars Climate Orbiter

y wrglc' ENGL KH 1 WHATE ve R L '. The Mars Climate Orbiter, built at a cost of $125 million, was a 338-kilogram robotic space probe

launched by NASA on December 11, 1998 to study the Martian climate, Martian atmosphere, and

surface changes. In addition, its function was to act as the communications relay in the Mars

Remember the Mars Climate Orbiter incident from 1999? Surveyor ‘98 program for the Mars Polar Lander. The navigation team at the Jet Propulsion

Laboratory (JPL) used the metric system of millimeters and meters in its calculations, while

NASA’s Mars Climate Orbiter (cost of $327 million) was lost because of a discrepancy
between use of metric unit Newtons and imperial measure Pound-force.

51

Units Checker Identifies Physical Unit Inconsistencies

® (Guarantees that operations are performed on the same
Kinds and units

e Kinds of annotations
e @Acceleration, @Angle, @Area, @Current, @Length,
@Luminance, @Mass, @Speed, @Substance,
@Temperature, @Time

® S| unit annotation
e @m, @km, @mm, @kg, @mPERs, @mPERSs?2,
@radians, @degrees, @A, ...

Checker Frameworks: Limitations

&

e Can only analyze code that is annotated
e Requires that dependent libraries are also annotated
e Can be tricky, but not impossible, to retrofit annotations
INto existing codebases

e Only considers the signature and annotations of methods
e Doesn’t look at the implementation of methods that are
being called

e Dynamically generated code
e Spring Framework

® ¢ Can produce false positives!
e Byproduct of necessary approximations

53

Infer: VWhat If we didn't want Annotations

&

® Focused on memory safety bugs
e Null pointer dereferences, memory leaks, resource
leaks, ...

e Compositional interprocedural reasoning
e Based on separation logic and bi-abduction

e Scalable and fast
e Can run incremental analysis on changed code

® Does not require annotations

e Supports multiple languages
e Java, C, C++, Objective-C
e Programs are compiled to an intermediate
representation

54

Infer: VWhat If we didn't want Annotations

&

NULLPTR_DEREFERENCE

Reported as "Nullptr Dereference" by pulse.

Infer reports null dereference bugs in Java, C, C++, and Objective-C when it is possible that the null pointer is dereferenced, leading

to a crash.

Null dereference in Java

Many of Infer's reports of potential Null Pointer Exceptions (NPE) come from code of the form

55

Infer: VWhat If we didn't want Annotations

&

Examples

Infer's cost analysis statically estimates the execution cost of a program without running the code. For instance, assume that we had

the following program:

void loop(ArrayList<Integer> list){
for (int i = 0; i <= list.size(); i++){

¥
by

For this program, Infer statically infers a polynomial (e.g. 8| 1ist|+16) for the execution cost of this program by giving each
instruction in Infer's intermediate language a symbolic cost (where |. | refers to the length of a list). Here---overlooking the actual
constants---the analysis infers that this program’s asymptotic complexity is 0(| list|) , thatis loop is linear in the size of its input

list. Then, at diff time, if a developer modifies this code to,

56

Beware of Inevitable False Positives &

& openssl/openssl DSponsor @Waikch + 906 {yStr 142k Y Fok 63K

Code @ Issues 12 Pull requests 251 ») Actions Projects 2 Wiki Security

Consider using Facebook's "infer" static analysis tool #6968 i

richsalz opened this issue on Al
—@ dot-asm commented on Sep 2, 2018 Contributor (&)

I'm not impressed. Majority, >2/3 of reports are DEAD _STORE and most common reason is last
*ptr++ . More specifically ++ is viewed problematic because pointer is not used anymore. The
post-increment is also customarily part of macro, so that in order to address this, one would have
to have two macros, one that leaves pointer post-incremented and one that doesn't. It would be

excessive and doesn't help readability.

Majority of MEMORY _LEAK reports is because it fails to recognize for example
EVP_MD_ CTX free as resource freeing. This is counter-productive, one has to work too hard look
for real ones. There seem to be couple in test/*... Then there is some hairy stuff in o_names.c:236,
maybe false positive... Oh! There seem to be real leak in ssI3_final_finish_mac(), multiple logical
errors...

The Best QA Strategies use Multiple Tools &

58

How Many of All Bugs Do We Find?
A Study of Static Bug Detectors

Andrew Habib
andrew.a.habib@gmail.com
Department of Computer Science
TU Darmstadt
Germany

ABSTRACT

Static bug detectors are becoming increasingly popular and are
widely used by professional software developers. While most work
on bug detectors focuses on whether they find bugs at all, and
on how many false positives they report in addition to legitimate
warnings, the inverse question is often neglected: How many of all
real-world bugs do static bug detectors find? This paper addresses
this question by studying the results of applying three widely used
static bug detectors to an extended version of the Defectsd] dataset
that consists of 15 Java projects with 594 known bugs. To decide
which of these bugs the tools detect, we use a novel methodology
that combines an automatic analysis of warnings and bugs with a
manual validation of each candidate of a detected bug. The results
of the study show that: (i) static bug detectors find a non-negligible
amount of all bugs, (ii) different tools are mostly complementary to
each other, and (iii) current bug detectors miss the large majority
of the studied bugs. A detailed analysis of bugs missed by the static
detectors shows that some bugs could have been found by variants
of the existing detectors, while others are domain-specific problems
that do not match any existing bug pattern. These findings help

potential users of such tools to assess their utility, motivate and out-

line directions for future work on static bug detection, and provide
a basis for future comparisons of static bug detection with other
bug finding techniques, such as manual and automated testing.

Michael Pradel
michael@binaervarianz.de
Department of Computer Science
TU Darmstadt
Germany

International Conference on Automated Software Engineering (ASE '18), Sep-
tember 3-7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3238147.3238213

1 INTRODUCTION

Finding software bugs is an important but difficult task. For average
industry code, the number of bugs per 1,000 lines of code has been
estimated to range between 0.5 and 25 [21]. Even after years of
deployment, software still contains unnoticed bugs. For example,
studies of the Linux kernel show that the average bug remains in
the kernel for a surprisingly long period of 1.5 to 1.8 years [8, 24].
Unfortunately, a single bug can cause serious harm, even if it has
been subsisting for a long time without doing so, as evidenced by
examples of software bugs that have caused huge economic loses
and even killed people [17, 28, 46].

Given the importance of finding software bugs, developers rely
on several approaches to reveal programming mistakes. One ap-
proach is to identify bugs during the development process, e.g.,
through pair programming or code review. Another direction is
testing, ranging from purely manual testing over semi-automated
testing, e.g., via manually written but automatically executed unit
tests, to fully automated testing, e.g., with Ul-level testing tools.
Once the software is deployed, runtime monitoring can reveal so
far missed bues. e.c.. collect information about abnormal runtime

SpotBugs
Tool Bugs
Error Prone 8 14
Infer 5 2 2
SpotBugs 18 0
Total: 31 6 0 3

Total of 27 unique bugs

Error Prone Infer

Figure 4: Total number of bugs found by all three static
checkers and their overlap.

Dynamic Analysis

G .

59

Android Memory Profiler

« MEMORY + Recorded Java / Kotlin Allocations: 07.686

MEMORY

00.000 15.000

Table Visualization

0 KB 16 KB 32 KB 48 KB
<Thread main>
main() (Lcom/android/internal/os/Zygotelnit;)

invoke() (Ljava/lang/reflect/Method;)

main() (Landroid/app/ActivityThread;)

loop() (Landroid/os/Looper;)

dispatchMessage() (Landroid/os/Handler;)

handleMessage() (Landroid/app/ActivityThread$H;)

execute() (Landroid/app/servertransaction/TransactionExecutor;)
executeCallbacks() (Landroid/app/servertransaction/TransactionExecutor;)
execute() (Landroid/app/servertransaction/ActivityRelaunchltem;)
handleRelaunchActivity() (Landroid/app/ActivityThread;)
handleRelaunchActivitylnner() (Landroid/app/ActivityThread;)
handleLaunchActivity() (Landroid/app/ActivityThread;)
performLaunchActivity() (Landroid/app/ActivityThread;)
callActivityOnCreate() (Landroid/app/Instrumentation;)

S

MainActivity - stopped - saved - destroyed . lMainActivity

Allocation Size v Q Match Case Regex

Total: 9

A S
64 KB

createBa

onCreate() (Lcom/example/myapplication/MainActivity;) updateR
setContentView() (Landroidx/appcompat/app/AppCompatActivity;) updat...
setContentView() (Landroidx/appcompat/app/AppCompatDelegatelmpl;) onCreate()... [onCrea..." il
ensureSubDecor() (Landroidx/appcompat/app/AppCompatDelegatelmpl;) ’ ' rest... B g... cre
createSubDecor() (Landroidx/appcompat/app/AppCompatDelegatelmpl;) u... lges
getDecorView() (Lcom/android/internal/policy/PhoneWindow;) inflate() (Landroid/view/Layoutinflater;) obtai... in... |[[HEN i g Il T
inflate() (Landroid/view/Layoutinflater;) obtai... |in... g... | |

getTransition() (Lcom/andr... generateLayout() (Lcom/a... generateDec... inflate() (Landroid/view/Layoutinflater;) obtai... |in... 0 C.. [
inflateTransition() (Landroi... onResourcesLoaded() (L... ' <init... |l obtai... in... 1] |
[GreateTransitionFromXmI(inflate() (Landroid/view/... | I... || rinflate() (Landroid/view/Layoutinflate... resize... n... [C...
[CreatenransitionF M | inflate() (Landroid/view/... | | RSN 0 || I |
]] inflate() (Landroid/view/... JI Il © ll rinflate() (Landroid/view/Layo... int[] <...| ||

|] createViewFromTa... rl.. N N | createViewFromTag() (Landr... (<... |H]

https://developer.android.com/studio/profile/memory-profiler

60

Pycharm Debugger

@ & & BB ~+honProject v Version control v
Adding breakpoints

) e car.py

def accelerate(

.speed += 5

def brake()
.speed -= 5

def step(E
.odometer +=
.time += 1

def average_speed()<

return .odometer /
if _name__ =="'__main__' while True

Vv @

Run & car

G
Accelerating...
What should I do? [Alccelerate, [B]rake, [0]dometer, or show average [S]peed?b
Braking...
What should I do? [Alccelerate, [B]rake, [0]dometer, or show average [S]peed?b
Braking...

«©

M @

What should I do? [Alccelerate, [B]lrake, [0]dometer, or show average [S]peed?o
The car has driven 0 kilometers

© ©

What should I do? [Alccelerate, [B]lrake, [0]dometer, or show average [S]peed?

O pythonProject > @@ car.py 271 LF UTF-8 4 spaces Python 3.9 (pythonProject)

https://www.jetbrains.com/help/pycharm/debugging-your-first-python-application.html#where-is-the-problem

Valgring

Dynamic Analysis Library

&

Vl orind

Current release: valgrind-3.23.0

B0 G
'

Valgrind is an instrumentation framework for building dynamic analysis tools. There are Valgrind tools that can
automatically detect many memory management and threading bugs, and profile your programs in detail. You can
also use Valgrind to build new tools.

The Valgrind distribution currently includes seven production-quality tools: a memory error detector, two thread error
detectors, a cache and branch-prediction profiler, a call-graph generating cache and branch-prediction profiler, and
two different heap profilers. It also includes an experimental SimPoint basic block vector generator. It runs on the
following platforms: X86/Linux, AMD64/Linux, ARM/Linux, ARM64/Linux, PPC32/Linux, PPC64/Linux,
PPCG64LE/Linux, S390X/Linux, MIPS32/Linux, MIPS64/Linux, X86/Solaris, AMD64/Solaris, ARM/Android (2.3.x and
later), ARM64/Android, X86/Android (4.0 and later), MIPS32/Android, X86/FreeBSD, AMD64/FreeBSD,
ARM64/FreeBSD, X86/Darwin and AMD64/Darwin (Mac OS X 10.12).

Valgrind is Open Source / Free Software, and is freely available under the GNU General Public License, version 2.

62

https://valgrind.org/

Summary (¢

63

® | inters are cheap, fast, but imprecise analysis tools
e Can be used for purposes other than bug detection (e.g.,
style)

® Conservative analyzers can demonstrate the absence of
particular defects
e At the cost of false positives due to necessary
approximations
¢ |nevitable trade-off between false positives and false
negatives

® The best QA strategy involves multiple analysis and testing
techniques
e [he exact set of tools and techniques depends on context

