
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Spring 2026

Week 6 - Class I:
A Software Engineer’s

Guide to LLMs

Administrivia

2

• SDE Project Part 1

• Due Tomorrow!

• Two parts:

• Team Contract

• Initial Project Backlog

• Lecture Recordings

• Up to Date on Course Webpage

Software QA: Static & Dynamic Analysis

3

Static Analysis

4

Tools for Static Analysis

5

Static Analysis is a Key Part of CI

6

Static Analysis used to be Purely Academic…

7

Static Analysis is Also Integrated into IDEs

8

What Makes a Good Static Analysis Tool?

9

• Static analysis should be fast

• Don’t hold up development velocity

• This becomes more important as code scales

• Static analysis should report few false positives

• Otherwise developers will start to ignore warnings and alerts, and quality will decline

• Static analysis should be continuous

• Should be part of your continuous integration pipeline

• Diff-based analysis is even better -- don’t analyse the entire codebase; just the
changes

• Static analysis should be informative

• Messages that help the developer to quickly locate and address the issue

• Ideally, it should suggest or automatically apply fixes

(1) Linters

10

• Cheap, fast, and lightweight static source analysis

Use Linters to Enforce Style Guidelines

11

• Don’t rely on manual inspection during code review!

Linters Use Very “Shallow” Static Analysis

12

• Ensure proper indentation

• Naming convention

• Line sizes

• Class nesting

• Documenting public functions

• Parenthesis around expressions

• What else?

Use Linters to Improve Maintainability

13

• Why? We spend more time reading code than writing it.

• Various estimates of the exact %, some as high as
80%

• Code is ownership is usually shared

• The original owner of some code may move on

• Code conventions make it easier for other developers to
quickly understand your code

UseStyle Guidelines to Facilitate Communication

14

• Guidelines are inherently opinionated, but consistency is
the important point. Agree to a set of conventions and
stick to them.

Take Home Message: Style is an Easy Way to
Improve Readability!

15

• Everyone has their own opinion (e.g., tabs vs. spaces)

• Agree to a convention and stick to it

• Use continuous integration to enforce it

• Use automated tools to fix issues in existing code

(2) - Pattern-based Static Analysis Tools

16

• Bad Practice

• Correctness

• Performance

• Internationalization

• Malicious Code

• Multithreaded Correctness

• Security

• Dodgy Code

SpotBugs can be Extended with Plugins

17

Challenges

18

• The analysis must produce zero false positives
• Otherwise developers won’t be able to build the code!

• The analysis needs to be really fast
• Ideally < 100 ms
• If it takes longer, developers will become irritated and
lose productivity

• You can’t just “turn on” a particular check
• Every instance where that check fails will prevent
existing code from
• There could be thousands of violations for a single
check across large codebases

(3) -Use Type Annotations to Detect Common Errors

19

• Uses a conservative analysis to prove the absence of certain
defects

• Null pointer errors, uninitialized fields, certain liveness
issues, information leaks, SQL injections, bad regular
expressions, incorrect physical units, bad format strings, ...

• C.f. SpotBugs which makes no safety guarantees

• Assuming that code is annotated and those annotations
are correct

• Uses annotations to enhance type system

• Example: Java Checker Framework or MyPy

(3) -Use Type Annotations to Detect Common Errors

20

• Uses a conservative analysis to prove the absence of certain
defects

• Null pointer errors, uninitialized fields, certain liveness
issues, information leaks, SQL injections, bad regular
expressions, incorrect physical units, bad format strings, ...

• C.f. SpotBugs which makes no safety guarantees

• Assuming that code is annotated and those annotations
are correct

• Uses annotations to enhance type system

• Example: Java Checker Framework or MyPy

Taint Analysis

21

• Tracks flow of sensitive information through the program

• Tainted inputs come from arbitrary, possibly malicious
sources
• User inputs, unvalidated data

• Using tainted inputs may have dangerous
consequences
• Program crash, data corruption, leak private data, etc.

• We need to check that inputs are sanitized before
reaching sensitive locations

Classic Example: SQL Injection

22

Classic Example: SQL Injection

23

void processRequest() {	
String input = getUserInput();
String query = "SELECT ... " + input;
executeQuery(query);

}

Classic Example: SQL Injection

24

void processRequest() {	
String input = getUserInput();
String query = "SELECT ... " + input;
executeQuery(query);

}

Tainted input arrives from untrusted source

Tainted output flows to a sensitive sink

Classic Example: SQL Injection

25

void processRequest() {	
String input = getUserInput(); 	

input = sanitizeInput(input);

String query = "SELECT ... " + input;
executeQuery(query);

}

Taint is removed by sanitizing data

We can now safely execute query on untainted data

Unit Catastrophe

26

Units Checker Identifies Physical Unit Inconsistencies

27

• Guarantees that operations are performed on the same
kinds and units

• Kinds of annotations
• @Acceleration, @Angle, @Area, @Current, @Length,
@Luminance, @Mass, @Speed, @Substance,
@Temperature, @Time

• SI unit annotation
• @m, @km, @mm, @kg, @mPERs, @mPERs2,
@radians, @degrees, @A, ...

Checker Frameworks: Limitations

28

• Can only analyze code that is annotated
• Requires that dependent libraries are also annotated
• Can be tricky, but not impossible, to retrofit annotations
into existing codebases

• Only considers the signature and annotations of methods
• Doesn’t look at the implementation of methods that are
being called

• Dynamically generated code
• Spring Framework

• • Can produce false positives!
• Byproduct of necessary approximations

Infer : What if we didn’t want Annotations

29

• Focused on memory safety bugs
• Null pointer dereferences, memory leaks, resource
leaks, ...

• Compositional interprocedural reasoning
• Based on separation logic and bi-abduction

• Scalable and fast
• Can run incremental analysis on changed code

• Does not require annotations

• Supports multiple languages
• Java, C, C++, Objective-C
• Programs are compiled to an intermediate
representation

Infer : What if we didn’t want Annotations

30

Infer : What if we didn’t want Annotations

31

Beware of Inevitable False Positives

32

The Best QA Strategies use Multiple Tools

33

Dynamic Analysis

34

Android Memory Profiler

35

https://developer.android.com/studio/profile/memory-profiler

Pycharm Debugger

36 https://www.jetbrains.com/help/pycharm/debugging-your-first-python-application.html#where-is-the-problem

Valgrind Dynamic Analysis Library

37 https://valgrind.org/

Summary

38

• Linters are cheap, fast, but imprecise analysis tools
• Can be used for purposes other than bug detection (e.g.,
style)

• Conservative analyzers can demonstrate the absence of
particular defects
• At the cost of false positives due to necessary
approximations
• Inevitable trade-off between false positives and false
negatives

• The best QA strategy involves multiple analysis and testing
techniques
• The exact set of tools and techniques depends on context

A Software Engineer’s Guide to LLMs

39

Learning Goals

40

• Part I: How to Effectively use an modern LLM agent
framework for Software Development

• Part II: How to Integrate LLM-powered reasoning into an
application.

What even is an LLM?

41

Large Language Models

42

• Language Modeling: Measure probability of a sequence of words

• Input: Text sequence

• Output: Most likely next word

• LLMs are... large

• GPT-3 has 175B parameters

• GPT-4 is estimated to have ~1.24 Trillion

• Pre-trained with up to a PB of Internet text data

• Massive financial and environmental cost

*Not actual size

Large Language Models are Pre-trained

43

• Only a few people have resources to train LLMs

• Access through API calls

• OpenAI, Google Vertex AI, Anthropic, Hugging Face

• We will treat it as a black box that can make errors!

LLMs are Far from Perfect

44

• Hallucinations
• Factually Incorrect Output

• High Latency
• Output words generated one at a
time
• Larger models also tend to be
slower

• Output format
• Hard to structure output (e.g.
extracting date from text)
• Some workarounds for this (later)

The AI Coding Hype Cycle

45

The Rise of LLMs for Coding

46 Credit Steve Yegge - “The Revenge of the Junior Developer”

The Shifting Landscape

47 Credit Steve Yegge - “The Revenge of the Junior Developer”

Industry Anecdotes

48

Industry Anecdotes

49

Industry Anecdotes

50

Industry Anecdotes

51

LLM-powered Software Development

52

Claude Code - Our Subject

53

Claude Code - Common Workflows

54

• Getting Started - Codebase Comprehension

• cd /path/to/project

• claude

• > give me an overview of this codebase

• > explain the main elements of the
architecture used here

