CEN 501 é:

Software
-ngineering

Spring 2026

Q University of
sﬁ Central Florida

Dr. Kevin Moran

Week 4- Class I:

Sof

'ware lesting

v &

|

Administrivia (&

e Assignment 3 Posted
e GGetting familiar with CI/CD and Deployment

e All parts of the Assignment due Fri Feb 5th @
11:59p0m!

e Get started today!!!
e SDE Project Checkpoint 1 posted!

e \Ve will go over this today.

Software lesting &

Learning Goals &

® |dentify the scope and limitations of software testing

® Appreciate software testing as a methodology to use automation in improving
software quality

® Describe the benefits of using continuous integration and deployment (Cl/CD)
® Measure the quality of software tests and define test adequacy criteria

® Enumerate different levels of testing such as unit testing, integration testing,
system testing, and testing in production

® Describe the principles of test-driven development
e Qutline design principles for writing good tests

® Recognize and avoid testing anti-patterns

What is Testing Good For? &

® \What is testing”?

® Execution of code on sample inputs in a controlled
environment

® Principle goals:

e \/alidation: program meets requirements, including
quality attributes.

® Defect testing: reveal failures.

What Is lesting Good For?

&

Why should we test? What does testing achieve?

® \Vhat does testing not achieve?

When should we test?
® And where should we run the tests?
e What should we test?

e \What CAN we test? (Software quality attributes)

How should we test?

® How many ways can you test the sort() function?
« How good are our tests?

® How to measure test quality?

What Makes a Good lest? (¢

What Makes a Good Test? (¢

€, Om OpenBudgeteer

Manage your Budget
v with Buckets

() Docker Image (pre-release) M () Docker Image (latest) E" Eﬂ

m aweeome docker pulls 113k release v1.7

https://github.com/TheAxelander/OpenBudgeteer

What Makes a Good lest!?

OpenBudgeteer ome \ccount ansaction

Income

3.761,17 €

Budget .

484,89 €

MiBucket ¥ Import

Expenses

-9.111,34€

Pending Want

0,00€

Bucket

¥ Monthly Expenses

Bucket 1
Bucket 2
Bucket 3

Bucket 4 (Inactive from: 01.04.2020)

¥ Non-Monthly Expenses

Bucket 5
Bucket 6
Bucket 7

Bucket 8

¥ Living Expenses

Car

Groceries
Others

Public Transport

Treatment Expenses

Balance

82,42

0,00

600,92

44,76

48,47

11,00

0,00

InOut

=)

o

o

=)

o

Month Balance

-5.350,17 €

Remaining Budget

484,89 €

Want

n

0,99

23,44

1.140,78

754,17

17,50

50,00

250,00

ersion: 1.3 (Change Log

Bank Balance

- 20.793,14 €

Negative Bucket Balance

0,00€

Activity Details

0,99
23,44
-1.114,59
754,17
89,50 until 2020-08

550,00 until 2021-01

11,00 until 2020-04

52,50 until 2020-02

https://github.com/TheAxelander/OpenBudgeteer

Why Write Tests at All? &

10

® [ow bar] Ensure that our software meets requirements, is correct, etc.

® Preventing bugs or quality degradations from being accidentally introduced in
the future -> Regression Testing

® Helps uncover unexpected behaviors that can’t be identified by reading
source code

® |[ncreased confidence in changes (“will | break the internet with this commit?”)

® Bridges the gap between a declarative view of the system (i.e., requirements)
and an imperative view (i.e., iImplementation) by means of redundancy.

® [ests are executable documentation; increases code maintainability

® [orces writing testable code <-> checks software design

Jesting Levels

&

Unit testing
® Code level, E.g. is a function implemented correctly?

® [Does not require setting up a complex environment

Integration testing

® Do components interact correctly? E.g. a feature that cuts across client and
server.

e Usually requires some environment setup, but can abstract/mock out other
components that are not being tested (e.g. network)

e System testing
e \/alidating the whole system end-to-end (E2E)

® Requires complete deployment in a staging area, but fake data

Testing in production

® Real data but more risks

11

What are the Limitations of Testing? &

® "Jesting shows the presence, not the absence of bugs.” -
Edsger W. Dijkstra

® [esting doesn’t really give any formal assurances
® \\Vriting tests Is hard, time consuming
e Knowing Iif your tests are good enough is not obvious

® Executing tests can be expensive, especially as software
complexity and configuration space grows

® [ull test suite for a single large app can take several days
to run

12

What can We lest for? (¢

13

Test Oracles (¢

® “Oracles” are mechanisms that tell you when program
execution seems abnormal or unexpected

® [.g. assert, segfault, exception

® Other examples: performance threshold, memory
footprint, address sanitizer

14

Test Oracles

&

® Obvious in some applications (e.g. “sort()”) but more
challenging in others (e.g. “encrypt()” or Ul-based tests)

® | ack of good oracles can limit
—asy to generate lots of input C

‘he scalabillity of testing.
ata, but not easy to

validate if output (or other prog

ram behavior) is correct.

® [ortunately, we have some tricks.

15

Differential Testing

® |f you have two implementations of the same specification, then their output
should match on all inputs.
e £.9. mergeSort(x).equals(bubbleSort(x)) -> should always be true
e Special case of a property test, with a free oracle.

® |f a differential test fails, at least one of the two implementations is wrong.
e But which one”?
e [f you have N>2 implementations, run them all and compare. Majority wins
(the odd one out is buggy).

e Differential testing works well when testing programs that implement
standard specifications such as compilers, browsers, SQL engines, XML/
JSON parsers, media players, etc.

e Not feasible in general e.g. for UCF’s custom grad application system.

Regression lesting

&

® Dif

erential testing through time (or versions, say V1 and

V2).

® Assuming V1 and V2 don’t add a new feature or fix a

known bug, then f(x) in V1 should give the same result as
f(x) In V2.

® Key ldea: Assume the current version is correct. Run
program on current version and log output. Compare all
future versions to that output.

17

When Should We lest! (¢

18

lest

Driven Development

&

19

® [ests first!

® Popular agile technigue

® \\rite tests as specifications before code

® Never write code without a failing test

® Claims:

e Design approach toward testable design

e [hink about Interfaces first
e Avoid unneeded code

igher product quality
igher test suite quality
igher overall productivity

Common Bar for Contributions &

Chromium
e Changes should include corresponding tests. Automated testing is at
the heart of how we move forward as a project. All changes should
include corresponding tests so we can ensure that there is good
coverage for code and that future changes will be less likely to regress
functionality. Protect your code with tests!

Firefox

Testing Policy

Everything that lands in mozilla-central includes automated
tests by default. Every commit has tests that cover every

major piece of functionality and expected input conditions.

Docker

20

Conventions

Fork the repo and make changes on your fork in a feature branch:

« Ifit's a bugfix branch, name it XXX-something where XXX is the number of the issue
« Ifit's a feature branch, create an enhancement issue to announce your intentions, and name it XXX-
something where XXX is the number of the issue.

Submit unit tests for your changes. Go has a great test framework built in; use it! Take a look at existing t
inspiration. Run the full test suite on your branch before submitting a pull request.

1

Regression Testing &

® Usual model:
® |ntroduce regression tests for bug fixes, etc.
® Compare results as code evolves
® Codel + TestSet -> TestResults
 Code2 + TestSet -> TestResults2
® As code evolves, compare TestResults1 with TestResults?2, etc.
® Benefits:
® Ensure bug fixes remain in place and bugs do not reappear.

® Reduces reliance on specifications, as <TestSet, TestResults1> acts as one.

21

cCOMMIT

X (&

@

RELATED CODE

@

REVIEW

STAGING PRODUCTION

ol {0—0—0—-0
BUILD UNIT INTEGRATION
TESTS TESTS

CI PIPELINE

ol J -0

CD PIPELINE

22

low GoocC

Are Our lests!

G .

23

Code Coverage

&

24

® | ine coverage
e Statement coverage

Sranch coverage
nstruction coverage
Basic-block coverage
—dge coverage

Path coverage

Code Coverage

LCOV - code coverage report
Current view: top level - test Hit Total
Test: coverage.info Lines: 6092
Date: 2018-02-07 13:06:43 Functions: 481
. Fllename Line Coverage ¢ ___ Functions$

sl steing table test.c _ | 100.0 % 212
250 tise test.¢ == 100.0 % 1
had dtls tost.c [] 97.6 % 163/167 100.0 % 9/9
bitestc o TS s 81.5% /8
hio s test.C | 78.7% 74194 100.0 % 9/9
hatest.c] 97.7% 1038/1062 100.0 % 45/45
chicha faternal test.c | — 833% 10/12 100.0 % 212
Clghername test. ([100.0 % 212
seltestic [100.0 % 90/90 100.0 % 12/12
Shtest.c] 95.5 % 22/ 100.0 % 20/20
Ritestc) R 1000% 2/2
dacatest < | e— 755% 123/163 100.0 % 10/10
dhtest.c = 84.6 % 88/104 100.0 % 4/4
detgtest.c [E— XL L 92.9% 13/14
dtls aty test.c — 86.8% 59/68 100.0 % 5/5
dilstest.c 97.1% 34/35 100.0 % 4/4
dtlsvilistentest.c] 94.9% 31139 100.0 % 4/4
scdsatest < —— 94.0 % 140/149 100.0 % 1
angingtest.c) 92.8% 141/152 100.0 % m
LTETTERCIN [] 100.0 % 1m2/112 100.0 % 10/10
fatalerrtest.c |1 89.3% 25/28 100.0 % 212
hardshake helper.c —) 84.7% 494583 97.4% 38/39
haactest.c [] 100.0 % nm 100.0 % 117
Aeatest.C] 100.0 % 30/30 100.0 % 4/4
igtest.c | — 87.9% 109/124 100.0 % /1

hash_test | — 78.6 % 66/84 100.0 % 8/8
2 internal test.c | — 81.8% 91 100.0 % 2/2
et] 100.0 % 18/18 100.0 % 212
acspapitest.c I 95.5% 64/67 100.0 % 4/4
pagkette: [] 100.0 % 248/ 248 100.0 % 0/

100

104
105
106
107
108
10

110
111
11

113
11

115
11

117
11

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

e

NN N

~ NN

L. L1 A\ = DOLMaEdI M. T LIdLAMIaDIILLA, NiadiivuLy) = W)

else {

8 o / 1. goto fail;
101 : /* DSA, ECDSA - just use the SHA1l hash */
10
10

}
1: hashout.data = hashes + SSL_MDS_DIGEST_LEN;
L hashout.length = SSL_SHAl_DIGEST_LEN;
1: if ((err = SSLFreeBuffer(&hashCtx)) != 0)
1: 1f ((err = ReadyHash(&SSLHashSHA1l, &hashCtx)) != 0)
e 1f ((err = SSLHashSHAl.update(&hashCtx, &clientRandom)) != 0)
I 1f ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
e 1f ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
1: goto fail;

1f ((err = SSLHashSHAl.final(&hashCtx, &hashout)) != 0)

goto fail;

err = sslRawverify(ctx,
ctx->peerPubKey,
dataToSign,
dataToSignLen,
signature,
signatureLen);
i1f(err) {

sslErrorLog("SSLDecodeSignedServerKeyExchange:

"returned %d\n", (int)err);

goto fail;
}
. fail:
i SSLFreeBuffer (&signedHashes) ;
Ut SSLFreeBuffer(&hashCtx) ;

1: return err;

/* plaintext *
/* plaintext 1

sslRawverify "

25

We Can Measure Coverage on Almost Anything &

- J J tew CtriaN
line, 3) ; G Open.. CtO

it (=
Cleardlpline = **

Ixit Functiom

[% ot Appuc SEIGH = TOvamarS) o

New

Yew Draw

ChrieN

CrieN

Chri+O

Qbject W

)D R 2T B Drawch Applscation - [(

B e |6 o Ov

J) bew Chele

Chrk

E® Yew Drow Cblect m'?\?m}

\ J 3w
: q..‘l.;p-

D pe e vow praw
J J New Christ:

———

26

Be Aware of Coverage Chasing &

® Recall: issues with metrics and incentives
e Also: Numbers can be deceptive

® 100% coverage != exhaustively tested
e “Coverage is not strongly correlated with suite
effectiveness”

e Based on empirical study on GitHub projects
Inozemtseva and Holmes, ICSE’14]

e Still, it's a good low bar
e Code that is not executed has definitely not been tested

27

Coverage of What! &

® Distinguish code being tested and code being executed
® | brary code >>>> Application code

® (Can selectively measure coverage
e All application code >>> code being tested

® Not always easy to do this within an application

28

Coverage |= Outcome

&

29

e \Vhat’s better, tests that always pass or tests that always fail”
® [ests should ideally be falsifiable. Boundary determines
® specification

® |deally:
e Correct implementations should pass all tests
e Buggy code should fail at least one test
e |ntuition behind mutation testing (we’ll revisit this next week)

e \What if tests have bugs?
e Pass on buggy code or fail on correct code

® Fven worse: flaky tests
e Pass or fail on the same test case nondeterministically

e \What’s the worst type of test”

lest Design Principles

&

e Use public APIs only

e Clearly distinguish inputs, configuration, execution, and
oracle

® Be simple; avoid complex control flow such as
conditionals and loops

® [ests shouldn’'t need to be frequently changed or
refactored

e Definitely not as frequently as the code being tested
changes

30

Antl-Patterns

&

31

® SNOopy oracles
e Relying on implementation state instead of observable behavior
e £.g. Checking variables or fields instead of return values

® Brittle tests
e Overfitting to special-case behavior instead of general principle
e E.g. hard-coding message strings instead of behavior

® Slow tests
e Self-explanatory(beware of heavy environments, 1/0, and sleep())

® [aky tests
¢ [ests that pass or fail nhondeterministically
e Often because of reliance on random inputs, timing (e.g. sleep(1000)),
availability of external services (e.g. fetching data over the network in a unit
test), or dependency on order of test execution (e.g. previous test sets up
global variables in certain way)

Takeaways &

® Most tests that you will write will be muuuuuuch more complex than
testing a sort function.

® Need to set up environment, create objects whose methods to test,
create objects for test data, get all these into an interesting state, test
multiple APIs with varying arguments, etc.

o Many tests will require mocks (i.e., faking a resource-intensive
component).

® (GGeneral principles of many of these strategies still apply:
¢ \\riting tests can be time consuming
e Determining test adequacy can be hard (if not impossible)
e [est oracles are not easy
e Advanced test strategies have trade-offs (high costs with high returns)

32

