
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Spring 2026

Week 4- Class I:
Software Testing

Administrivia

2

• Assignment 3 Posted

• Getting familiar with CI/CD and Deployment

• All parts of the Assignment due Fri Feb 5th @
11:59pm!

• Get started today!!!

• SDE Project Checkpoint 1 posted!

• We will go over this today.

Software Testing

3

Learning Goals

4

• Identify the scope and limitations of software testing

• Appreciate software testing as a methodology to use automation in improving
software quality

• Describe the benefits of using continuous integration and deployment (CI/CD)

• Measure the quality of software tests and define test adequacy criteria

• Enumerate different levels of testing such as unit testing, integration testing,
system testing, and testing in production

• Describe the principles of test-driven development

• Outline design principles for writing good tests

• Recognize and avoid testing anti-patterns

What is Testing Good For?

5

• What is testing?

• Execution of code on sample inputs in a controlled
environment

• Principle goals:

• Validation: program meets requirements, including
quality attributes.

• Defect testing: reveal failures.

What is Testing Good For?

6

• Why should we test? What does testing achieve?

• What does testing not achieve?

• When should we test?

• And where should we run the tests?

• What should we test?

• What CAN we test? (Software quality attributes)

• How should we test?

• How many ways can you test the sort() function?

• How good are our tests?

• How to measure test quality?

What Makes a Good Test?

7

What Makes a Good Test?

8

https://github.com/TheAxelander/OpenBudgeteer

What Makes a Good Test?

9

https://github.com/TheAxelander/OpenBudgeteer

Why Write Tests at All?

10

• [Low bar] Ensure that our software meets requirements, is correct, etc.

• Preventing bugs or quality degradations from being accidentally introduced in
the future -> Regression Testing

• Helps uncover unexpected behaviors that can’t be identified by reading
source code

• Increased confidence in changes (“will I break the internet with this commit?”)

• Bridges the gap between a declarative view of the system (i.e., requirements)
and an imperative view (i.e., implementation) by means of redundancy.

• Tests are executable documentation; increases code maintainability

• Forces writing testable code <-> checks software design

Testing Levels

11

• Unit testing

• Code level, E.g. is a function implemented correctly?

• Does not require setting up a complex environment

• Integration testing

• Do components interact correctly? E.g. a feature that cuts across client and
server.

• Usually requires some environment setup, but can abstract/mock out other
components that are not being tested (e.g. network)

• System testing

• Validating the whole system end-to-end (E2E)

• Requires complete deployment in a staging area, but fake data

• Testing in production

• Real data but more risks

What are the Limitations of Testing?

12

• "Testing shows the presence, not the absence of bugs.” -
Edsger W. Dijkstra

• Testing doesn’t really give any formal assurances

• Writing tests is hard, time consuming

• Knowing if your tests are good enough is not obvious

• Executing tests can be expensive, especially as software
complexity and configuration space grows

• Full test suite for a single large app can take several days
to run

What can We Test for?

13

Test Oracles

14

• “Oracles” are mechanisms that tell you when program
execution seems abnormal or unexpected

• E.g. assert, segfault, exception

• Other examples: performance threshold, memory
footprint, address sanitizer

Test Oracles

15

• Obvious in some applications (e.g. “sort()”) but more
challenging in others (e.g. “encrypt()” or UI-based tests)

• Lack of good oracles can limit the scalability of testing.
Easy to generate lots of input data, but not easy to
validate if output (or other program behavior) is correct.

• Fortunately, we have some tricks.

Differential Testing

16

• If you have two implementations of the same specification, then their output
should match on all inputs.
• E.g. `mergeSort(x).equals(bubbleSort(x))` -> should always be true
• Special case of a property test, with a free oracle.

• If a differential test fails, at least one of the two implementations is wrong.
• But which one?
• If you have N>2 implementations, run them all and compare. Majority wins
(the odd one out is buggy).

• Differential testing works well when testing programs that implement
standard specifications such as compilers, browsers, SQL engines, XML/
JSON parsers, media players, etc.
• Not feasible in general e.g. for UCF’s custom grad application system.

Regression Testing

17

• Differential testing through time (or versions, say V1 and
V2).

• Assuming V1 and V2 don’t add a new feature or fix a
known bug, then f(x) in V1 should give the same result as
f(x) in V2.

• Key Idea: Assume the current version is correct. Run
program on current version and log output. Compare all
future versions to that output.

When Should We Test?

18

Test Driven Development

19

• Tests first!

• Popular agile technique

• Write tests as specifications before code

• Never write code without a failing test

• Claims:
• Design approach toward testable design
• Think about interfaces first
• Avoid unneeded code
• Higher product quality
• Higher test suite quality
• Higher overall productivity

Common Bar for Contributions

20

Regression Testing

21

• Usual model:

• Introduce regression tests for bug fixes, etc.

• Compare results as code evolves

• Code1 + TestSet -> TestResults1

• Code2 + TestSet -> TestResults2

• As code evolves, compare TestResults1 with TestResults2, etc.

• Benefits:

• Ensure bug fixes remain in place and bugs do not reappear.

• Reduces reliance on specifications, as <TestSet,TestResults1> acts as one.

Continuous Integration & Deployment

22

How Good Are Our Tests?

23

Code Coverage

24

• Line coverage
• Statement coverage
• Branch coverage
• Instruction coverage
• Basic-block coverage
• Edge coverage
• Path coverage
•...

Code Coverage

25

We Can Measure Coverage on Almost Anything

26

Be Aware of Coverage Chasing

27

• Recall: issues with metrics and incentives
• Also: Numbers can be deceptive

• 100% coverage != exhaustively tested
• “Coverage is not strongly correlated with suite
effectiveness”

• Based on empirical study on GitHub projects
[Inozemtseva and Holmes, ICSE’14]

• Still, it’s a good low bar
• Code that is not executed has definitely not been tested

Coverage of What?

28

• Distinguish code being tested and code being executed

• Library code >>>> Application code

• Can selectively measure coverage

• All application code >>> code being tested

• Not always easy to do this within an application

Coverage != Outcome

29

• What’s better, tests that always pass or tests that always fail?

• Tests should ideally be falsifiable. Boundary determines

• specification

• Ideally:
• Correct implementations should pass all tests
• Buggy code should fail at least one test
• Intuition behind mutation testing (we’ll revisit this next week)

• What if tests have bugs?
• Pass on buggy code or fail on correct code

• Even worse: flaky tests
• Pass or fail on the same test case nondeterministically

• What’s the worst type of test?

Test Design Principles

30

• Use public APIs only

• Clearly distinguish inputs, configuration, execution, and
oracle

• Be simple; avoid complex control flow such as
conditionals and loops

• Tests shouldn’t need to be frequently changed or
refactored
• Definitely not as frequently as the code being tested
changes

Anti-Patterns

31

• Snoopy oracles
• Relying on implementation state instead of observable behavior
• E.g. Checking variables or fields instead of return values

• Brittle tests
• Overfitting to special-case behavior instead of general principle
• E.g. hard-coding message strings instead of behavior

• Slow tests
• Self-explanatory(beware of heavy environments, I/O, and sleep())

• Flaky tests
• Tests that pass or fail nondeterministically
• Often because of reliance on random inputs, timing (e.g. sleep(1000)),
availability of external services (e.g. fetching data over the network in a unit
test), or dependency on order of test execution (e.g. previous test sets up
global variables in certain way)

Takeaways

32

• Most tests that you will write will be muuuuuuch more complex than
testing a sort function.

• Need to set up environment, create objects whose methods to test,
create objects for test data, get all these into an interesting state, test
multiple APIs with varying arguments, etc.

• Many tests will require mocks (i.e., faking a resource-intensive
component).

• General principles of many of these strategies still apply:
• Writing tests can be time consuming
• Determining test adequacy can be hard (if not impossible)
• Test oracles are not easy
• Advanced test strategies have trade-offs (high costs with high returns)

