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Administrivia
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• SDE Project Part 1 

• Will be Posted to Course Webpage today 

• Due on Friday, February 13th. 

• Assignment 3 

• Posted to Course Webpage 

• Due on Monday, February 9th. 

• Make sure to accept the GitHub Organization 
Invitation!



Software Testing

3



What can We Test for?
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Test Oracles
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• “Oracles” are mechanisms that tell you when program 
execution seems abnormal or unexpected  

• E.g. assert, segfault, exception  

• Other examples: performance threshold, memory 
footprint, address sanitizer 



Test Oracles
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• Obvious in some applications (e.g. “sort()”) but more 
challenging in others (e.g. “encrypt()” or UI-based tests)  

• Lack of good oracles can limit the scalability of testing. 
Easy to generate lots of input data, but not easy to 
validate if output (or other program behavior) is correct.  

• Fortunately, we have some tricks. 



Differential Testing
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• If you have two implementations of the same specification, then their output 
should match on all inputs.  
• E.g. `mergeSort(x).equals(bubbleSort(x))` -> should always be true  
• Special case of a property test, with a free oracle.  

• If a differential test fails, at least one of the two implementations is wrong.  
• But which one?  
• If you have N>2 implementations, run them all and compare. Majority wins 
(the odd one out is buggy).  

• Differential testing works well when testing programs that implement 
standard specifications such as compilers, browsers, SQL engines, XML/
JSON parsers, media players, etc.  
• Not feasible in general e.g. for UCF’s custom grad application system. 



Regression Testing
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• Differential testing through time (or versions, say V1 and 
V2). 

• Assuming V1 and V2 don’t add a new feature or fix a 
known bug, then f(x) in V1 should give the same result as 
f(x) in V2.  

• Key Idea: Assume the current version is correct. Run 
program on current version and log output. Compare all 
future versions to that output.



When Should We Test?
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Test Driven Development
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• Tests first! 

• Popular agile technique 

• Write tests as specifications before code 

• Never write code without a failing test  

• Claims: 
• Design approach toward testable design  
• Think about interfaces first 
• Avoid unneeded code 
• Higher product quality 
• Higher test suite quality 
• Higher overall productivity 



Common Bar for Contributions
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Regression Testing
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• Usual model:  

• Introduce regression tests for bug fixes, etc.  

• Compare results as code evolves 

• Code1 + TestSet -> TestResults1  

• Code2 + TestSet -> TestResults2


• As code evolves, compare TestResults1 with TestResults2, etc.  

• Benefits:  

• Ensure bug fixes remain in place and bugs do not reappear.  

• Reduces reliance on specifications, as <TestSet,TestResults1> acts as one.



Continuous Integration & Deployment
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How Good Are Our Tests?
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Code Coverage
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• Line coverage 
• Statement coverage  
• Branch coverage 
• Instruction coverage  
• Basic-block coverage  
• Edge coverage 
• Path coverage 
•...



Code Coverage
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We Can Measure Coverage on Almost Anything
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Be Aware of Coverage Chasing
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• Recall: issues with metrics and incentives  
• Also: Numbers can be deceptive  

• 100% coverage != exhaustively tested 
• “Coverage is not strongly correlated with suite 
effectiveness”  

• Based on empirical study on GitHub projects 
[Inozemtseva and Holmes, ICSE’14]  

• Still, it’s a good low bar 
• Code that is not executed has definitely not been tested 



Coverage of What?
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• Distinguish code being tested and code being executed 

• Library code >>>> Application code  

• Can selectively measure coverage  

• All application code >>> code being tested 

• Not always easy to do this within an application 



Coverage != Outcome
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• What’s better, tests that always pass or tests that always fail?  

• Tests should ideally be falsifiable. Boundary determines  

• specification  

• Ideally: 
• Correct implementations should pass all tests 
• Buggy code should fail at least one test 
• Intuition behind mutation testing (we’ll revisit this next week)  

• What if tests have bugs? 
• Pass on buggy code or fail on correct code  

• Even worse: flaky tests 
• Pass or fail on the same test case nondeterministically  

• What’s the worst type of test? 



Test Design Principles
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• Use public APIs only  

• Clearly distinguish inputs, configuration, execution, and  
oracle  

• Be simple; avoid complex control flow such as 
conditionals and loops  

• Tests shouldn’t need to be frequently changed or 
refactored  
• Definitely not as frequently as the code being tested 
changes  



Anti-Patterns
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• Snoopy oracles 
• Relying on implementation state instead of observable behavior  
• E.g. Checking variables or fields instead of return values  

• Brittle tests 
• Overfitting to special-case behavior instead of general principle  
• E.g. hard-coding message strings instead of behavior  

• Slow tests  
• Self-explanatory(beware of heavy environments, I/O, and sleep())  

• Flaky tests  
• Tests that pass or fail nondeterministically  
• Often because of reliance on random inputs, timing (e.g. sleep(1000)), 
availability of external services (e.g. fetching data over the network in a unit 
test), or dependency on order of test execution (e.g. previous test sets up 
global variables in certain way) 



Takeaways
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• Most tests that you will write will be muuuuuuch more complex than 
testing a sort function.  

• Need to set up environment, create objects whose methods to test, 
create objects for test data, get all these into an interesting state, test 
multiple APIs with varying arguments, etc.  

• Many tests will require mocks (i.e., faking a resource-intensive 
component).  

• General principles of many of these strategies still apply:  
• Writing tests can be time consuming 
• Determining test adequacy can be hard (if not impossible) 
• Test oracles are not easy 
• Advanced test strategies have trade-offs (high costs with high returns) 



Intro to Software Architecture
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Learning Goals
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• Understand the abstraction level of architectural reasoning  

• Appreciate how software systems can be viewed at different  
abstraction levels  

• Distinguish software architecture from (object-oriented)  
software design  

• Use notation and views to describe the architecture suitable to  
the purpose  

• Document architectures clearly, without ambiguity 



Views and Abstraction
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Views & Abstraction
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Views & Abstraction
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Views & Abstraction
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Abstracted Views Focus on Conveying Information
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• They have a well-defined purpose 

• Show only necessary information 

• Abstract away unnecessary details 

• Use legends/annotations to remove ambiguity 

• Multiple views of the same object tell a larger story



Software Architecture Case Study: Autonomous Vehicles
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Case Study: Apollo
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• Check out the “side pass” feature from the video:  

• http://tinyurl.com/cen24-vid   

• Source: https://github.com/ApolloAuto/apollo  

• Doxygen: https://hidetoshi-furukawa.github.io/apollo/
doxygen/index.html 

http://tinyurl.com/cen24-vid
https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html


Apollo Software Architecture
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Apollo Hardware Architecture
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Apollo Hardware/Vehicle Overview
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Apollo Perception Module
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Apollo ML Models
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Apollo Software Stack
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Feature Evolution (Software Stack View)
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Software Architecture
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The software architecture of a program or computing system is the structure or structures of 
the system, which comprise software elements, the externally visible properties of those 

elements, and the relationships among them.  
[Bass et al. 2003]  

Note: this definition is 

ambivalent to whether the


architecture is known,

or whether it’s any good!



Software Design vs. Architecture
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Levels of Abstraction
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• Requirements 

• high-level “what” needs to be done  

• Architecture (High-level design) 

• high-level “how”, mid-level “what”  

• OO-Design (Low-level design, e.g. design patterns) 

• mid-level “how”, low-level “what”  

• Code 

• low-level “how” 



Design vs. Architecture

43

• Design Questions


• How do I add a menu item in 
VSCode?  

• How can I make it easy to add 
menu items in VSCode?  

• What lock protects this data?  

• How does Google rank pages?  

• What encoder should I use for 
secure communication?  

• What is the interface between 
objects? 

• Architectural Questions


• How do I extend VSCode with a 
plugin? 

• What threads exist and how do they 
coordinate? 

• How does Google scale to billions of 
hits per day? 

• Where should I put my firewalls? 

• What is the interface between 
subsystems? 



Objects

44



Design Patterns
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Design Patterns
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Design Patterns
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Architecture
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Architecture
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Architecture

50



Why Document Architecture?
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• Blueprint for the system 
• Artifact for early analysis 
• Primary carrier of quality attributes 
• Key to post-deployment maintenance and enhancement  

• Documentation speaks for the architect, today and 20 
years from today  

• As long as the system is built, maintained, and evolved 
according to its documented architecture  

• Support traceability.



Views & Purposes
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• Every view should align with a purpose  

• • Views should only represent information relevant to that purpose  

• Abstract away other details 

• Annotate view to guide understanding where needed  

• • Different views are suitable for different reasoning aspects (different quality 
goals), e.g.,  

• Performance 

• Extensibility 

• Security 

• Scalability  

• ... 



Common Views in Documenting Software Architecture
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• Static View 

• Modules (subsystems, structures) and their relations 
(dependencies, ...)  

• Dynamic View  

• Components (processes, runnable entities) and 
connectors (messages, data flow, ...)  

• Physical View (Deployment) 

• Hardware structures and their connections 



Common Software Architectures
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1. Pipes & Filters
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Pipes & Filters Example: Compilers
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2. Object Oriented Organization
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3. Event-Driven Architecture
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Example: HTML DOM + Javascript
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4. Blackboard Architecture
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5. Layered Systems
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Example Internet Protocol Suite
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Guidelines for Selecting a Notation
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• Suitable for purpose  

• Often visual for compact representation  

• Usually boxes and arrows  

• UML possible (semi-formal), but possibly constraining 

• Note the different abstraction level – Subsystems or processes, not classes or objects  

• Formal notations available  

• Decompose diagrams hierarchically and in views  

• Always include a legend  

• Define precisely what the boxes mean  

• Define precisely what the lines mean  

• Do not try to do too much in one diagram  

• Each view of architecture should fit on a page  

• Use hierarchy 


