CEN 501 é:

Software
Choineerin Week 4 - Class |I:
e 5 Introduction to
Spring 2026 Software Architecture

&

University of /l
Central Florida -.l gl 0 'i\

Dr. Kevin Moran

Administrivia (&

e SDE Project Part 1
o \Will be Posted to Course Webpage today
e Due on Friday, February 13th.
o Assignment 3
e Posted to Course Webpage
e Due on Monday, February 9th.

e Make sure to accept the GitHub Organization
Invitation!

Software lesting &

What can We lest for? (¢

Test Oracles (¢

® “Oracles” are mechanisms that tell you when program
execution seems abnormal or unexpected

® [.g. assert, segfault, exception

® Other examples: performance threshold, memory
footprint, address sanitizer

Test Oracles

&

® Obvious in some applications (e.g. “sort()”) but more
challenging in others (e.g. “encrypt()” or Ul-based tests)

® | ack of good oracles can limit
—asy to generate lots of input C

‘he scalabillity of testing.
ata, but not easy to

validate if output (or other prog

ram behavior) is correct.

® [ortunately, we have some tricks.

Differential Testing

® |f you have two implementations of the same specification, then their output
should match on all inputs.
e £.9. mergeSort(x).equals(bubbleSort(x)) -> should always be true
e Special case of a property test, with a free oracle.

® |f a differential test fails, at least one of the two implementations is wrong.
e But which one”?
e [f you have N>2 implementations, run them all and compare. Majority wins
(the odd one out is buggy).

e Differential testing works well when testing programs that implement
standard specifications such as compilers, browsers, SQL engines, XML/
JSON parsers, media players, etc.

e Not feasible in general e.g. for UCF’s custom grad application system.

Regression Testing &

e Differential testing through time (or versions, say V1 and
V2).

® Assuming V1 and V2 don’t add a new feature or fix a

known bug, then f(x) in V1 should give the same result as
f(x) In V2.

® Key ldea: Assume the current version is correct. Run
program on current version and log output. Compare all
future versions to that output.

When Should We lest! (¢

lest

Driven Development

&

10

® [ests first!

® Popular agile technigue

® \\rite tests as specifications before code

® Never write code without a failing test

® Claims:

e Design approach toward testable design

e [hink about Interfaces first
e Avoid unneeded code

igher product quality
igher test suite quality
igher overall productivity

Common Bar for Contributions &

Chromium
e Changes should include corresponding tests. Automated testing is at
the heart of how we move forward as a project. All changes should
include corresponding tests so we can ensure that there is good
coverage for code and that future changes will be less likely to regress
functionality. Protect your code with tests!

Firefox

Testing Policy

Everything that lands in mozilla-central includes automated
tests by default. Every commit has tests that cover every

major piece of functionality and expected input conditions.

Docker
Conventions

Fork the repo and make changes on your fork in a feature branch:

« Ifit's a bugfix branch, name it XXX-something where XXX is the number of the issue
« Ifit's a feature branch, create an enhancement issue to announce your intentions, and name it XXX-
something where XXX is the number of the issue.

Submit unit tests for your changes. Go has a great test framework built in; use it! Take a look at existing t
inspiration. Run the full test suite on your branch before submitting a pull request.

1

11

Regression Testing &

® Usual model:
® |ntroduce regression tests for bug fixes, etc.
® Compare results as code evolves
® Codel + TestSet -> TestResults
 Code2 + TestSet -> TestResults2
® As code evolves, compare TestResults1 with TestResults?2, etc.
® Benefits:
® Ensure bug fixes remain in place and bugs do not reappear.

® Reduces reliance on specifications, as <TestSet, TestResults1> acts as one.

12

cCOMMIT

X (&

@

RELATED CODE

@

REVIEW

STAGING PRODUCTION

ol {0—0—0—-0
BUILD UNIT INTEGRATION
TESTS TESTS

CI PIPELINE

ol J -0

CD PIPELINE

13

low GoocC

Are Our lests!

G .

14

Code Coverage

&

15

® | ine coverage
e Statement coverage

Sranch coverage
nstruction coverage
Basic-block coverage
—dge coverage

Path coverage

Code Coverage

LCOV - code coverage report
Current view: top level - test Hit Total
Test: coverage.info Lines: 6092
Date: 2018-02-07 13:06:43 Functions: 481
. Fllename Line Coverage ¢ ___ Functions$

sl steing table test.c _ | 100.0 % 212
250 tise test.¢ == 100.0 % 1
had dtls tost.c [] 97.6 % 163/167 100.0 % 9/9
bitestc o TS s 81.5% /8
hio s test.C | 78.7% 74194 100.0 % 9/9
hatest.c] 97.7% 1038/1062 100.0 % 45/45
chicha faternal test.c | — 833% 10/12 100.0 % 212
Clghername test. ([100.0 % 212
seltestic [100.0 % 90/90 100.0 % 12/12
Shtest.c] 95.5 % 22/ 100.0 % 20/20
Ritestc) R 1000% 2/2
dacatest < | e— 755% 123/163 100.0 % 10/10
dhtest.c = 84.6 % 88/104 100.0 % 4/4
detgtest.c [E— XL L 92.9% 13/14
dtls aty test.c — 86.8% 59/68 100.0 % 5/5
dilstest.c 97.1% 34/35 100.0 % 4/4
dtlsvilistentest.c] 94.9% 31139 100.0 % 4/4
scdsatest < —— 94.0 % 140/149 100.0 % 1
angingtest.c) 92.8% 141/152 100.0 % m
LTETTERCIN [] 100.0 % 1m2/112 100.0 % 10/10
fatalerrtest.c |1 89.3% 25/28 100.0 % 212
hardshake helper.c —) 84.7% 494583 97.4% 38/39
haactest.c [] 100.0 % nm 100.0 % 117
Aeatest.C] 100.0 % 30/30 100.0 % 4/4
igtest.c | — 87.9% 109/124 100.0 % /1

hash_test | — 78.6 % 66/84 100.0 % 8/8
2 internal test.c | — 81.8% 91 100.0 % 2/2
et] 100.0 % 18/18 100.0 % 212
acspapitest.c I 95.5% 64/67 100.0 % 4/4
pagkette: [] 100.0 % 248/ 248 100.0 % 0/

100

104
105
106
107
108
10

110
111
11

113
11

115
11

117
11

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

e

NN N

~ NN

L. L1 A\ = DOLMaEdI M. T LIdLAMIaDIILLA, NiadiivuLy) = W)

else {

8 o / 1. goto fail;
101 : /* DSA, ECDSA - just use the SHA1l hash */
10
10

}
1: hashout.data = hashes + SSL_MDS_DIGEST_LEN;
L hashout.length = SSL_SHAl_DIGEST_LEN;
1: if ((err = SSLFreeBuffer(&hashCtx)) != 0)
1: 1f ((err = ReadyHash(&SSLHashSHA1l, &hashCtx)) != 0)
e 1f ((err = SSLHashSHAl.update(&hashCtx, &clientRandom)) != 0)
I 1f ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
e 1f ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
1: goto fail;

1f ((err = SSLHashSHAl.final(&hashCtx, &hashout)) != 0)

goto fail;

err = sslRawverify(ctx,
ctx->peerPubKey,
dataToSign,
dataToSignLen,
signature,
signatureLen);
i1f(err) {

sslErrorLog("SSLDecodeSignedServerKeyExchange:

"returned %d\n", (int)err);

goto fail;
}
. fail:
i SSLFreeBuffer (&signedHashes) ;
Ut SSLFreeBuffer(&hashCtx) ;

1: return err;

/* plaintext *
/* plaintext 1

sslRawverify "

16

We Can Measure Coverage on Almost Anything &

- J J tew CtriaN
line, 3) ; G Open.. CtO

it (=
Cleardlpline = **

Ixit Functiom

[% ot Appuc SEIGH = TOvamarS) o

New

Yew Draw

ChrieN

CrieN

Chri+O

Qbject W

)D R 2T B Drawch Applscation - [(

B e |6 o Ov

J) bew Chele

Chrk

E® Yew Drow Cblect m'?\?m}

\ J 3w
: q..‘l.;p-

D pe e vow praw
J J New Christ:

———

17

Be Aware of Coverage Chasing &

® Recall: issues with metrics and incentives
e Also: Numbers can be deceptive

® 100% coverage != exhaustively tested
e “Coverage is not strongly correlated with suite
effectiveness”

e Based on empirical study on GitHub projects
Inozemtseva and Holmes, ICSE’14]

e Still, it's a good low bar
e Code that is not executed has definitely not been tested

18

Coverage of What! &

® Distinguish code being tested and code being executed
® | brary code >>>> Application code

® (Can selectively measure coverage
e All application code >>> code being tested

® Not always easy to do this within an application

19

Coverage |= Outcome

&

20

e \Vhat’s better, tests that always pass or tests that always fail”
® [ests should ideally be falsifiable. Boundary determines
® specification

® |deally:
e Correct implementations should pass all tests
e Buggy code should fail at least one test
e |ntuition behind mutation testing (we’ll revisit this next week)

e \What if tests have bugs?
e Pass on buggy code or fail on correct code

® Fven worse: flaky tests
e Pass or fail on the same test case nondeterministically

e \What’s the worst type of test”

lest Design Principles

&

e Use public APIs only

e Clearly distinguish inputs, configuration, execution, and
oracle

® Be simple; avoid complex control flow such as
conditionals and loops

® [ests shouldn’'t need to be frequently changed or
refactored

e Definitely not as frequently as the code being tested
changes

21

Antl-Patterns

&

22

® SNOopy oracles
e Relying on implementation state instead of observable behavior
e £.g. Checking variables or fields instead of return values

® Brittle tests
e Overfitting to special-case behavior instead of general principle
e E.g. hard-coding message strings instead of behavior

® Slow tests
e Self-explanatory(beware of heavy environments, 1/0, and sleep())

® [aky tests
¢ [ests that pass or fail nhondeterministically
e Often because of reliance on random inputs, timing (e.g. sleep(1000)),
availability of external services (e.g. fetching data over the network in a unit
test), or dependency on order of test execution (e.g. previous test sets up
global variables in certain way)

Takeaways &

® Most tests that you will write will be muuuuuuch more complex than
testing a sort function.

® Need to set up environment, create objects whose methods to test,
create objects for test data, get all these into an interesting state, test
multiple APIs with varying arguments, etc.

o Many tests will require mocks (i.e., faking a resource-intensive
component).

® (GGeneral principles of many of these strategies still apply:
¢ \\riting tests can be time consuming
e Determining test adequacy can be hard (if not impossible)
e [est oracles are not easy
e Advanced test strategies have trade-offs (high costs with high returns)

23

Intro to Software Architecture

G .

24

Learning Goals &

e Understand the abstraction level of architectural reasoning

® Appreciate how software systems can be viewed at different
abstraction levels

® Distinguish software architecture from (object-oriented)
software design

® Use notation and views to describe the architecture suitable to
the purpose

® Document architectures clearly, without ambiguity

25

Views anc

Abstraction

G .

26

iews & Abstraction &

[T oIy A T S e oA e L = g
5 z
HEDGE & & 2
i s ¢ W Plaza Dr 35 GEORGETOWN % S I»WON 5
. RIVERSBEND g $ £l 5 ’-’dbl,,*o 8 %
i = S s . 3 S
" ank Bivd (3 & Knights Clrclev _ c 2 3 2.'3 cavershay, 2
& < “ a
kS) i or 9
® i 2l Pa”‘@ o™ YORKSHIRE $ DEVON =
% =
5. e ;
UCP Bailes Community o% Ze S @ FBC Mortgage Stadium OXFORD Ugls_lril_?éng 2
Academy (K-8) (3) 1o o A A Q q\"’N \ 2
o ition Financial Arena S
‘ et D= FGEr TN & 5 Pose Photobooths 9 e
John Adams Wy 0 Siemens Quad Il £ S | posephotoco 2
WO B s
¥ UCF FAIRWINDS kS £
3 ;
Alumni Center (ALUM) e,
o N OrionBlvd
Siemens 9 Siemens/Quad IlI 9 Greek Park R
Y\z‘q@ ¢/\
ey, o%
: doke Ln S
Siemens 9 University. of & '»%
Q Aquarius-Agora Dr Central Florida ¥
. &
) Timothy R. S &
2 Rod
% Smoothie King Newman Me? & S
o e,,o/ Only at |~ S Nature < z ‘990,
Corporate® % DoubleTree by ST KR “ruest Pavilion £ = “
Hilton Hotel Orlando... UCF Arboretum Q University of ¥ A
n-C: Hitt Librar Q () Central Florida
UCRJeh Y o RiBoretim REGENCY PARK y
> S
4 Q g $
o, + & 8, <
; 5 —BurgerFi & a 0
Boys Orlando —~ A’@; ?‘e % | Chef Crafted, % o 3 oeh'OcdsDr £
W M)é = Hunger Approved ';,O n;,/ s
) 4 ' % Ave Duke Energy UCF % “/and Dr .
A o VG 13 Sl G e Firehouse Subs UCF Welcome Center o 2
Buffalo Wild Wings University Bivd (/) Firehouse Subs® s s r
BOGO Free o A 4 - Order Now pyxisY s 2
Boneless Wings olleg,, > 5 ki
e Way & Smoothie King 2
5 Only at|=#-
«\é Smoothie King
Paseo Park Rd @
.5 IS
A"’ﬁiersc’ &
e
434]
Aves, @ Twelve 100 S g
2 c & % g
& ©Nirg) Flo 5)
o RWC Park 2
; De%
s (akt’ Or
Ara Dr Neptune Dr
Siemens Energy
Innovation Center-by:: Furman Ave The By
9 Luminar Technologies 2
‘@ Ames Av®
La Quinta Inn & i € G\ngerCroek Bivd eleosphoto 9
uites by Wyndham... Px 2
UNIVERSITY SM__K, Addd & 3 ' >
e =

Views & Abstraction

Stables ® |« > g T = e pr—
1 A £-McCulloch-Rd 'Unlvers'allst Fe!lowshlp...ﬁ
2 STONEHEDGE T

% | RIVERSBEND

T .
—— McCulIoch Rd

® Wendover Place @ N4
il UCP Balles Community
Academy (53)
Q\“h
’b
I Siemens Quad,lll'\"

Drawdy-Rouse Cemetery ™

1
b

DoubleTree by
~ HiltomHotel Orlando.

Home2 Suites by Hilton ==

Orlando NeagUCF,
Top‘r'ated

Chef@rafted g
Hunger/Approy,

fi’ : R a0 Wild Wings ™ FlrehouseSubs UCE

= Flrehouse Subs®
s : Boneless Wlngs ’ i l,,lL
o3 " e — ‘
_ 'SUMMER
. WOODS

7Y el

McCulloch:Rd

~RWC Park

.

py:2snoy

La Qurnta Inn & 4’
Sunes‘by Wyndham...

:LJ:N|VERS|TY ¢
" "ACRES
e i A 5The Verge WL\
1 os. : -- Bank‘of-America (wrth
oEm— ') yDrivesthru ATM)
| ! o a " Qe
RIVER OAKS * ¢ ISKCON 9{5‘.‘-"‘10
LANDING ==),

b SHERWOOD L
¢ Mercurv 3100 &

c
FOREST .o e || -

28

Bﬁ‘f‘

\
"Naval Support

Activity OrIando do o7

vilion™ University of

Sy
'

Central FIorlda
Arboretum N

‘ A LuminarJechnologies

r’.

Bonneville
EIgmentary School

REGENCY.PARK~

— - M'céulloch*RcT{‘ Q“‘ DanyalZafirAhmed
o, Nty b Nad gl 4

Osborne Pré;perty g 5

Inspections;LELC “}
UNIVERSITY &
ESTATES

>
S
» ,If4 ”20

CANTERBURY "

Wolf Team Racmg
o pebo
2 §

Collegrate Lawn' .
and Landscaplng ‘

* East Lake
[}V 4Elementary School

D
1
!

Corn Maze|Orla

Painted Oal’(sJAcademy

Views & Abstraction

&

29

Abstracted Views Focus on Conveying Information

® [hey have a well-defined purpose

® Show only necessary information

® Apstract away unnecessary details

® Use legends/annotations to remove ambiguity

® Multiple views of the same object tell a larger story

30

Software Architecture Case Study: Autonomous Vehicles

NN —

MOTION FLOW LANE LINES LANE LINES ROAD FLOW IN-PATH OBJECTS ROAD LIGHTS OBJECTS ROAD SIGNS

31

Case Study: Apollo

&

® Check out the “side pass” feature from the video:

® Nhitp://tinyurl.com/cen24-vid

® Source: https://qithub.com/ApollcAuto/apollo

® Doxygen: https://hidetoshi-furukawa.qithub.io/apollo/
doxygen/index.html

32

http://tinyurl.com/cen24-vid
https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html

Apollo Software Archrtecture

33

Apollo Hardware Architecture

4

Car Power
System

(

power panel

Dataspeed 12VDC]

usB

IMU
if the receiver is
Propak 6 (not
needed for
Propak 7)

DB9

\ 4

NovAtel GPS
Receiver

TNC

GPS
Antenna

customized cables

Accessories: Monitor, Vehicle
WIFI 4G Keyboard, Mouse Chassis
LTE Router CAN
Vendor
Ethernet CAN
cable
4
4 N :
PCls | ¢spcan
Neousys 6108GC ”| card 4acH
R with GTX1080 N
> A
\ vy J Vendor
USB USB CAN
100M Ethernet cable
I [
& >
GPRMC and PpPs | Velodyr?e VLS-128 ARGUS FPD-Link Ultrasonic Sensor Continental
Si Is th h I LiDar Camera Radar
Ignals throug
|
|

34

Apollo Hardware/Vehicle Overview

128L LiDAR

16L LiDAR

35

Apollo Perception Module

&

Pre-Processing

Cameras—

Image

Pre-processing

Lidars —

Point cloud

Post-Processing

v

Multi-cameras

Lane

Pre-processing

segmentation

Labeling
v
Deep Networks
| Traffic light Temporal Traffic
Detection light recognition
Lane/Flow | Lane/Flow
Detection Tracking
g '
Object 2D-to-3D
Detection Conversion
| Point cloud Object

Classification

Radars

Radar
Process

A 4

A4

Final
Multi-traffic lights > .
Voting Traffic light
Calibration
|
Camera Object |
Tracking
Final object
Lidar Object Configurable N with type,
Tracking Sensor Fusion distance &
velocity
Radar Object | |
Tracking

36

Apollo ML Models

>

Traffic_Light_
Detection

Lane_Detection

bounding
boxes

Traffic_Light

Recognition

Horizon_Light

Traffic Light
Postprocess

Vertical _Light

Quadrate_Light

—

\/\

Lane Postprocess

"

traffic light result
e

Traffic Light

(€| Calibration

final lane result / ' messege
. | — >
' — >

&0

Bicycle

Fusion

LLILLL C
4. » Image Denseline polynomial curve
- = —>| Preprocess and lane type
— DarkSCNN
Camera
) . Camera
obstacle information
Camera_Obstacle_Detection Postprocess
ml)l\k Obstacle l)clccli(m\
LiIDAR_Velodyne 16 obstacle)
Point Clouds information LIDAR
Preprocess > » Postprocess
L LiIDAR_Velodyne_64 \/\
LiDAR LiDAR_Velodyne 128

/

Radar
Detection
Result

final object

result
F——

"

Lane Line

LI

light
__messege _

lane [

Prediction
Container

precept obstacle
message

Pedestrian

=)

1
-@_@.

Vehicle(truck or car)

Scenarios Manager

Junction

Cruise

Wy

Y

N

Trajectory
Prediction

~

-

Vehicle_Cruise_Cutin
Vehicle_Cruise_Go
Vehicle_Junction_Map
Vehicle_Junction_MLP
Vehicle_Lane_Scanning
Vehicle MLP
Vehicle_ RNN
Vehicle_Lane_Aggregate

Pedestrian_LSTM

J

37

. :) ; Volume Production V2X
Cloud Service Platform HD Map Simulation Data Platform Security OTA Duer0S Service Components = Roadside Service
Map Engine Localization Perception Planning Control End-to-End HMI
Openl S?ftware Apollo Cyber RT Framework V2X Adapter
Platform
RTOS

Hardware Development Computing ! Ultrasonic HMI Black Apollo Apollo

Platform Unit GFS/ ML SATEIA LR e Sensor Device Box Sensor Unit | Extension Unit NEs 2R

c CtJ.gentVe:'lctlfe Certified Apollo Compatible Drive-by-wire Vehicle Open Vehicle Interface Standard
ertificate Platform
Major Updates in Apollo 3.5

38

Feature

~volution (Software Stack View)

&

Cloud
Service Platform

Software
Open Platform

Hardware
Reference Platform

Vehicle
Reference Platform

Security

Perception Planning
Runtime Framework

RTOS

Radar

COTJPl}tting GPS/IMU Camera LiDAR
ni

Drive-by-wire Vehicle

HMI Device Black Box

Released in 1.0 Released in 1.5

Released in 2.0 Updated in 2.5

Source: https://github.com/ApolloAuto/apollo

39

Software Architecture (¢

The software architecture of a program or computing system is the structure or structures of
the system, which comprise software elements, the externally visible properties of those
elements, and the relationships among them.

[Bass et al. 2003]

Note: this definition is
ambivalent to whether the
architecture is known,
or whether it’s any good!

40

Software Design vs. Architecture

G .

41

| evels of Abstraction

&

® Requirements
® high-level “what” needs to be done

® Architecture (High-level design)
® high-level “how”, mid-level “what”

e OO-Design (Low-level design, e.g. design patterns)
e mid-level "how”, low-level “what”

e Code

® [ow-level “how’

42

Design vs. Architecture &

e Design Questions

® How do | add a menu item in
VVSCode?

® How can | make it easy to add
menu items in VSCode?

e |Vhat lock protects this data?
® How does Google rank pages?

® |Vhat encoder should | use for
secure communication?

® |Vhat is the interface between
objects?

43

e Architectural Questions

e How do [extend VSCode with a
plugin?

e |Vhat threads exist and how do they
coordinate?

® How does Google scale to billions of
hits per day?

e \Vhere should | put my firewalls?

® |/Vhat Is the interface between
subsystems?

44

Design Patterns

&

Factory

Observer

Model
/ Subject

45

&

Design Patterns

¢—— Controller

Vie

)
.
-

/ Subjec

- - — S — — |

46

Design Patterns

&

47

&

Archrtecture

11

L - -

48

&

Archrtecture

r

1

IIIIIIlIIIIIIIIJ

49

IIIIIIIIIIIIIIIII

“wwmﬂumwwmﬂmuuuum_
S B
mm“,_ﬁw”_"\.w..........mmm m
tx I
m “_"., - ”_.”.H”.”. - “m" o ..H.. . _L_
E

50

Why Document Architecture? &

® Blueprint for the system
o Artifact for early analysis
e Primary carrier of quality attributes
o Key to post-deployment maintenance and enhancement

e Documentation speaks for the architect, today and 20
years from today

® As long as the system is built, maintained, and evolved
according to its documented architecture

® Support traceability.

51

Views & Purposes &

® Fvery view should align with a purpose

® ¢ \/iews should only represent information relevant to that purpose
® Abstract away other details
® Annotate view to guide understanding where needed

® o Different views are suitable for different reasoning aspects (different quality
goals), e.qg.,

® Performance
e Extensibility
® Security

e Scalability

52

Common Views in Documenting Software Architecture

e Static View

® Modules (subsystems, structures) and their relations
(dependencies, ...)

® Dynamic View

® Components (processes, runnable entities) and
connectors (messages, data flow, ...)

e Physical View (Deployment)

® Hardware structures and their connections

53

Common Software Architectures

G .

54

|. Pipes & Filters

&

Pipes

Filters

f
-—I-il-- _

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

55

Pipes & Filters Example: Compllers

&

56

Languag

e 1 source code =w=f.anguage 2 source code

Compiler front-end for language 1 Compiler front-end for language 2

Generator

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Non-optimized intermediate code

Non-optimized intermediate code

Intermediate code optimizer

Optimized intermediate code

/ \

Target-1
Code Generator Code Generator

Target-2

lTarget-l machine code

[B -
= x| P

lTarget-Z machine code

«p

2. Object Oriented Organization

&

Proc call
\O
obj is a manager

op is an invocation

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

S7

3. BEvent-

Driven Architecture

&

Producer 1

P Event broker

Consumer 1
subscribed to A

Producer 2 *

Consumer 2
subscribedto A+ B

Consumer 3
Subscribed to B

58

Example: HTML DOM + Javascript

&

NodeBB

Welcome to the demo instance of NodeBB!

1posts 1posters 15 views

i Sortby N

Oldest to Newest VvV

Newest to Oldest

‘ Most Votes 12, 2017, 3:54 PM &
e _. . . PN s . o

59

4. Blackboard Architecture

&

Direct access

~

ks7

Computatlon
Blackboard

(shared)
CON

data)
- Memory

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

60

>. Layered Systems

&

Usually
procedure calls

Composites of
various elements

Useful Systems

Users

© David Garlan and Mary Shaw, CMU/SEI-94-TR-021

61

Example Internet Protocol Suite

&

Data

UDP | UDP
header| data

IP
header

IP data

Frame
header

Frame data

Frame
footer

Application

Transport

Internet

Link

62

Guidelines for Selecting a Notation

&

63

Suitable for purpose
Often visual for compact representation
Usually boxes and arrows
UML possible (semi-formal), but possibly constraining
e Note the different abstraction level — Subsystems or processes, not classes or objects
Formal notations available
Decompose diagrams hierarchically and in views
Always include a legend
Define precisely what the boxes mean
Define precisely what the lines mean
Do not try to do too much in one diagram
e Each view of architecture should fit on a page

e Use hierarchy

