
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Spring 2026

Week 3- Class II:
Software Teams &

Communication Pt. II

Administrivia

2

• Team-forming due by Friday!

• If you are not on a team, let me know and I can try to help

• Assignment 2 Posted

• Getting familiar with FakeFlix, the subject of our SDE project

• Both parts of the Assignment due Fri Jan 30th @ 11:59pm!

• I have posted resources related to Javascript and React
from my past web dev courses to assist.

• Get started today!!!

• SDE Project Checkpoint 1 will be posted by Tuesday, will
review next week.

Software Teams & Communication

3

Every Team Needs a Leader & a Manager

4

• Note: these are not the same thing.

• A leader inspires with their vision of how everyone could work
together.

• They maintain a positive working environment.

• They actively create their team culture.

• They promote fair play among team members.

• They acknowledge their team members’ individuality.

• They are humble and understand that others may know more
than they do.

How to be a Great Manager

5

• Managers handle work assignments and day-to-day
scheduling.

• Managers find resources to support their team’s tasks.

• Managers continuously improve their team’s processes.

• Managers allow team members to work autonomously,
without micromanaging them.

• Managers facilitate communicate between team
members.

Choosing a Team Leader

6

• Some leaders are respected for technical excellence.

• Some leaders are chosen based on past
accomplishments.

• Some leaders have high EQ (emotional quotient) and earn
everyone’s trust.

• Some leaders take the position through force of will and
because others acquiesce.

Why do you want to be team leader?

Divide Work and Integrate

7

Is this Issue Useful?

8

Writing Useful Github Issues

9

Writing Useful Github Issues

10

• Issue should include

• Context: explain the conditions which led you to write the issue

• Problem or idea: the context should lead to something

• Previous attempts to solve

• Solution or next step (if possible)

• Be specific!

• Include environment settings, versions, error messages, code
examples when necessary

@Mention or Assign Appropriate People

11

Use Labels

12

• Break the project down by areas of responsibility

• Mark non-triaged issues

• Isolate issues that await additional information from the
reporter

• Example:
• Bug / Duplicate / Documentation / Help Wanted / Invalid /
Enhancement
• status: wip, status: ready to implement, status: needs
discussion

Don’t Forget to Follow Up and Close Issues

13

• closes/resolves #issue_number

Pull Requests

14

How to Write Good Pull Requests

15

How to Write Good Pull Requests

16

How to Write Good Pull Requests

17

• Remember that anyone (in the company) could be
reading your PR

• Be explicit about what/when feedback you want

• @mention individuals that you specifically want to involve
in the discussion, and mention why.
• “/cc @jesseplusplus for clarification on this logic”

Keep your PRs Small

18

Keep your PRs Small

19

Offer Useful Feedback

20

• If you disagree strongly, consider giving it a few minutes before
responding; think before you react.

• Ask, don’t tell. (“What do you think about trying...?” rather than
“Don’t do...”)

• Explain your reasons why code should be changed. (Not in line
with the style guide? A personal preference?)

• Be humble. (“I’m not sure, let’s try...”)

• Avoid hyperbole. (“NEVER do...”)

• Be aware of negative bias with online communication.

Avoid Duplicates

21

• “Duplicate of” issue/pull request number

Be a Nice Person

22

Knowledge Sharing

23

Importance of Documentation

24

Types of Documentation

25

Maalej, W., & Robillard, M. P. (2013). Patterns of knowledge in API reference documentation. IEEE Transactions on Software Engineering, 39(9), 1264-1282.

Know Your Audience

26

• Internal document for your team (e.g., meeting note)

• Documentation for project contributors

• Documentation for non-developer collaborators (e.g., UX
researchers)

• Documentation for developer users

• Documentation for clients with no software knowldge

• User manual for end users

Importance of Asking Questions

27

How to Ask Questions

28

Make it Easy for People to Help You

29

• I am trying to ___, so that I can ___. I am running into
___.
I have looked at ___ and tried ___.

• + I’m using this tech stack: ___.

• + I’m getting this error/result: ___.

• + I think the problem could be ___.

Avoid Duplication

30

Resolving Conflicts

31

Resolving Conflicts

32

Communication!

33

Communication

Communication

Communication

Communication

You can’t solve any Problem
without Communication!

Conflict Resolution

34

• Your goal: Find a solution to the problem and move forward.
• As a smart person on ”TedLasso” once said,“Fight forward,not back.”

• Make sure that everybody works from the same set of facts.

• Establish ground rules for your team’s discussion.
• Talk about how the situation made you feel.Never presume anything about
anyone else.

• Remain calm and rational. If you feel triggered or threatened, extract yourself from
the situation, wait an hour to chill out, and then try again.

• If you reach an impasse, talk to your team leader.

• If your team remains in conflict, escalate to Dr. Moran.
• I can help to mediate

