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Administrivia
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• Industry Speaker Next Week! 

• Exams will be graded by Tuesday 

• Research Paper Presentation Selection 

• Due by end of next week - more details Monday



Software Engineering



The methods and techniques by which developers 
design, create, test, and manage software
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Blend scientific discovery with practical significance
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How Can We Design Practical Automation?
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UNDERSTANDING DEVELOPER NEEDS



MINING SOFTWARE REPOSITORIES
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MINING SOFTWARE REPOSITORIES
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Screenshots
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Bug Reports
Design 

Documents



LEARNING PATTERNS FROM SOFTWARE DATA
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LEARNING PATTERNS FROM SOFTWARE DATA

Source Code 
Files

Software  
Documentation

Screenshots
Screen 

Recordings
Bug Reports

Design 
Documents

Software  
Repository Data

Machine  
Learning

Salient  
Patterns



Requirements 
Analysis

DesignMaintenance

Testing Implementation

SOFTWARE DEVELOPMENT LIFECYCLE



HOW SOFTWARE ENGINEERING RESEARCH WORKS



SE RESEARCH PROJECT ROADMAP

Develop  
Idea

Read  
Related 

Work

Design  
Approach

Build  
Approach

Evaluate  
Approach

Write  
Paper!

Design  
Study

Conduct Survey/ 
Collect Data

Analyze  
Data

Write  
Paper!



TYPICAL SE RESEARCH TOPICS

AI and software engineering: 
• Search-based software engineering 
• Machine learning with and for SE 
• Recommender systems 
• Autonomic systems and self adaptation 
• Program synthesis 
• Program repair

Testing and analysis: 
• Software testing 
• Program analysis 
• Debugging and Fault localization 
• Programming languages 
• Performance 
• Mobile applications

Software analytics: 
• Mining software repositories 
• Apps and app store analysis 
• Software ecosystems 
• Configuration management 
• Software visualization

Software evolution: 
• Evolution and maintenance 
• API design and evolution 
• Release engineering and DevOps 
• Software reuse 
• Refactoring 
• Program comprehension 
• Reverse engineering

Social aspects of software engineering: 
• Human aspects of software engineering 
• Human-computer interaction 
• Distributed and collaborative software engineering 
• Agile methods and software processes 
• Software economics 
• Crowd-based software engineering 
• Ethics in software engineering 
• Green and sustainable technologies

Requirements, modeling, and design: 
• Requirements Engineering 
• Privacy and Security by Design 
• Modeling and Model-Driven Engineering 
• Software Architecture and Design 
• Variability and product lines 
• Software services

Dependability: 
• Formal methods 
• Validation and Verification 
• Reliability and Safety 
• Privacy and Security 
• Embedded and cyber-physical systems



SE RESEARCH VENUES

Conferences

International Conference on  
Software Engineering (ICSE)

Symposium on the Foundations 
of Software Engineering (FSE)

International Conference on 
Automated Software Engineering (ASE)

International Conference on Software 
Maintenance & Evolution (ICSME)

International Conference on Mining 
Software Repositories (MSR)

International Symposium on Software 
Testing and Analysis (ISSTA)

Journals

IEEE Transactions on  
Software Engineering

ACM Transactions on 
Software Engineering  

& Methodology

Springer Empirical  
Software Engineering



Deep Learning & Software Engineering 
– 

A Retrospective and Paths Forward

SWE 795 – Intersections of Deep Learning & Software Engineering

Thursday, January 27th, 2022

Kevin Moran, Ph.D.

George Mason University
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Talk Outline

• Topic 1 - Background: The Evolution of Machine Learning 
(ML) to Deep Learning (DL)

• Topic 2-  DL4SE: The Current State of Research

• Topic 3 – Looking Forward: Future Directions and Paths 
Forward
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Topic 1 – Background: The Evolution of Machine 
Learning to Deep Learning



What is Machine Learning?
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A branch of Artificial Intelligence that 
allows computers to infer patterns 

from data, which can be used for the 
prediction of new data points



The Hierarchy of Artificial Intelligence 
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Artificial Intelligence

Machine Learning

Representational Learning

Deep Learning



Machine Learning Taxonomy

Supervised 
Learning

Continuous 
Target Variable

Categorical 
Target Variable

Regression Classification

Medical Imaging
Housing Price 

Prediction

Unsupervised 
Learning

Target Variable Not Available

Clustering Association

Customer 
Segmentation

Grocery Bag 
Analysis



Machine Learning Taxonomy
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Reinforcement 
Learning

Categorical 
Target Variable

Target Variable 
Not Available

Classification Control

Optimized 
Marketing

Driverless Cars

Semi-Supervised 
Learning

Categorical Target Variable

Classification Clustering

Lane-finding on 
GPS data

Text
Classification



ML Representations
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Supervised 
Learning

Unsupervised 
Learning

Semi-Supervised 
Learning

Reinforcement 
Learning

Self-Training of 
Existing Classifiers

Hidden Markov 
Models

Multiple Gaussian 
Distributions

Semi-supervised 
support vector 
machines

K Nearest 
Neighbor

Naïve Bayes

Decision Trees

Linear Regression

Support Vector 
Machine

K-means clustering

Association rule 
learning

Q-Learning

Temporal Difference Canonical 
Representation



Machine Learning vs. Traditional Programming
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Machine

Machine

Data

Data

Program

Output

Output

“Program”



When do We Need Machine Learning?
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The Data The Pattern

No Possible Equation

Three Conditions:

1. We have an Existing Dataset

2. A pattern exists in the data

3. The pattern is not easily 
defined by an equation



The Computational Learning Process
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First Approx. Second Approx.

Learning Process

Target Function



Supervised ML Applied to Image Classification
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Data Model

0
1
2
3
4

0 2 4

Adjustment

Classification

Birds Bears

Important Note!

Our future examples focus on Supervised Learning for Images

However, the same principles apply to other types of data 
(natural language and code) and learning methods (Unsupervised 

and Reinforcement).



The Five Elements of the Learning Process
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Input {Bird, Bear}Output

Target
Function

F(x) Hypothesis G(x) ≈ F(x)

Data



Feature Engineering for “Canonical” Machine Learning
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Images Text

This is a sentence

This is a sentence

0 1 2 3 4 5

Class
Grant
Learn
Coarse

Source Code

A

B

E
D

F

C



“Canonical” ML Image Classification
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0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

Bird

Bear

On the Large-Scale ImageNet Dataset, 
which contains millions of images 

from over 1000 categories

Canonical ML techniques have only been 
able to achieve ~ 60% accuracy



Shortcomings of Traditional ML Techniques
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Manually 
Derived 
Features

Complex 
Kernels

Shallow 
Representation

101101101



The Advent of Deep Learning
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“Canonical” Machine Learning Deep Learning

Input

101101101

Feature 
Mapping

Output Bird

Input

Feature 
Mapping

Output Bear

Rich Hierarchical 
Feature 

“Embedding”



ML Representations
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Supervised 
Learning

Unsupervised 
Learning

Semi-Supervised 
Learning

Reinforcement 
Learning

Self-Training of 
Existing Classifiers

Hidden Markov 
Models

Multiple Gaussian 
Distributions

Semi-supervised 
support vector 
machines

K Nearest 
Neighbor

Naïve Bayes

Decision Trees

Linear Regression

Support Vector 
Machine

K-means clustering

Association rule 
learning

Q-Learning

Temporal Difference Canonical 
Representation

Deep
Representation

Neural Networks 
(Convolutional, 
Recurrent, Feed-
forward, etc.

Autoencoders

Deep Belief 
Networks

Generative 
Adversarial 
Networks (GANs)

Neural networks 

Autoencoders

Deep Adversarial 
Networks

Deep Q-Learning



Neurons: The Building Blocks of Rich Features

27

x1
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BiasInput

w1

w2

w3

wn

Weights

! " = max(0, ")

ReLU Activation Function

Additional Activation 
Functions 

• Identity
• Binary Step
• Sigmoid
• Tanh
• Leaky ReLU
• Softmax



Neural “Networks” for Rich Embeddings
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Handwritten
Digits

Visualized 
Rich Embedding 

Space



Automated Feature Discovery
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h

X

Y

Unfolded hhh

Feature Extraction

Feature Extraction

… …

Feature Extraction

Text (Natural Language)Code

Images

Convolutions Pooling 



How Can a Model Learn from Deep Embeddings?
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Adjust the Neuron “weights” according to errors 
made  on a given task.



How Can a Model Learn from Deep Embeddings?

31

Bear

Adjustment

w4

w3w2

w1
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Stochastic Gradient DecentBatch Gradient Decent

Local 
minimum

Optimal 
minimum

Learning 
Step

Mini-
Batch 

Gradient 
Decent

How Should the Weights be Updated?

Local 
minimum

Optimal 
minimum

Learning 
Step

Error Gradient Error Gradient



CNN-Accuracy
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ConvNets have surpassed human levels of 
accuracy on the ImageNet classification dataset



Deep Learning Advantages and Drawbacks
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Advantages Disadvantages
• Does not require 

manual feature 
engineering

• Capable of 
Learning Rich, 
Hierarchal Data 
Representations

• Can be trained for 
a given task end-
to-end

• Require massive 
datasets to 
function 
effectively

• Computationally 
expensive to train

• Models can 
difficult to 
interpret (Black 
Box)
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Topic 2 – DL4SE: The Current State of Research



Mining Software Repositories



Automation in Software Engineering Research

39

Source Code
Files

Software 
Documentation Screenshots

Screen
Recordings Bug Reports Design

Documents



Automation in Software Engineering Research
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Source Code
Files

Software 
Documentation

Screenshots
Screen
Recordings

Bug Reports
Design
Documents

Software 
Repository Data

Deep
Learning

Salient 
Patterns
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What is the current state-of-the-art of DL4SE?



Systematic Literature Review



Systematic Literature Review

Research Questions (RQs) centered upon the “components of learning”
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Research Questions (RQs) centered upon the “components of learning”



Systematic Literature Review

– RQ1: Target Function (SE Task)

– RQ2: Data (Training/Testing Data)

– RQ3: Learning Model (Algorithm 
+ Hypothesis Set)

– RQ4: Final Hypothesis (Results)

– RQ5: Reproducibility and 
Replicability 



Systematic Literature Review

• Time Period: 2009-(mid)2019

• Venues: ICLR, NeurIPS, FSE, ICML, MSR,  ISSTA, ICST, 
ICSE, ASE, ICSME, TSE, TOSEM, EMSE, OOPSLA, ICPC, 
PLDI, AAAI, IJCAI.

• Methodology: Following Kitchenham, et.al. 
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SLR Search Process



Publication Distribution By Venue

ICML MSR TSE ASE FSE NIPS ICSE ICSME ICLR ISSTA ArXiv
EMSE PLDI AAAI ICPC OOPSLA ICST

ICML

MSR TSEASE

FSE

NeurIPS

ICSE ICSME

ICLR

ISSTA

arXiv

EMSE PLDI

AAAI

ICPC

OOPSLA

ICST
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RQ1: Target Function (SE Task)



DL4SE Publications Over Time and SE Tasks
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Code Comprehension
Souce Code Generation

Source Code Retrieval & Traceability
Source Code Summarization

Bug-Fixing Process
Code Smells

Software Testing
Generating Non Code Artifacts

Clone Detection
Software Energy Metrics

Program Synthesis
Image To Structured Representation

Software Security
Program Repair

Software Reliability / Defect Prediction
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Developer Forum Analysis
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Code Location Within Media

Developer Intention Mining
Software Resource Control
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RQ2: Data (Training/Testing Data)



Data Used in DL4SE Approaches by SE Task

0 10 20 30 40 50 60 70 80 90 100

Source Code
Natural Language Descriptions

Program Input-Output Examples
Bug Report

Labeled UI Components
Source Code Diffs

Tabular Data
GitHub Issues

LDA Topics
Time Measurements

PPBE Tasks
Vision: Images or Video

Execution Traces
Contextual Flow Graphs

Karel DSL Grid
Android Intents & Filters

Symbolic Equations
Certificates

Proof Strategies
Cursor Position

Code Comprehension
Souce Code Generation
Source Code Retrieval & Traceability
Source Code Summarization
Bug-Fixing Process
Code Smells
Software Testing
Generating Non Code Artifacts
Clone Detection
Software Energy Metrics
Program Synthesis
Image To Structured Representation
Software Security
Program Repair
Software Reliability / Defect Prediction
Feature Location
Developer Forum Analysis
Program Translation
Software Categorization
Code Location Within Media
Developer Intention Mining
Software Resource Control



Data Processing Techniques by SE Task
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RQ2: Learning Model (Algorithm + Hypothesis Set)



DL4SE Neural Network Architectures



DL4SE Neural Network Architectures
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0 20 40 60

Neural GPU

Type-direct. Encoder

Neural Log-Bilinear

Deep Belief Networks

Rest. Boltzman Mach

GANs

Siamese

Graph NN

AutoEncoder

FNN

CNN

Encoder-Decoder

RNN



DL4SE Techniques to Combat Overfitting

0 10 20 30 40

Early Stopping

Dropout

Data Cleaning

L# Norm Reg.

Large Dataset

Cross Validation

Ensemble

Data Augmentation

Data Balancing

Batch Norm

Gradient Clipping

Hyperparam Tuning

Pretraining

Custom

Did Not Discuss

Code Comprehension
Souce Code Generation
Source Code Retrieval & Traceability
Source Code Summarization
Bug-Fixing Process
Code Smells
Software Testing
Generating Non Code Related Artifacts
Clone Detection
Software Energy Metrics
Program Synthesis
Image To Structured Representation
Software Security
Program Repair
Software Reliability / Defect Prediction
Feature Location
Developer Forum Analysis
Program Translation
Software Categorization
Code Location Within Media
Developer Intention Mining
Software Resource Control
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RQ4: Final Hypothesis (Results)



DL4SE Benchmarks
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Claimed DL4SE Impact
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Consideration of Occam’s Razor



Consideration of Occam’s Razor

26 (15.9%)

40 (24.4%)

70 (42.7%)

28 (17.1%)

No Consideration Varied Model Baseline Comparison Both 

28 (17.1%) 26 (15.9%)

70 (42.7%)

40 (24.4%)

No Consideration Varied Model Baseline Comparison Both
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RQ5: Reproducibility & Replicability



Non-Reproducibility Factors

31

26

38

22

14
2143

13

54

52

Learning Algorithm Loss Function

Hyperparameters Training/Val/Testing Details
Embedding Details Regularization Techniques
Exploratory Data Analysis Extraction Details

Missing Filtering Details No Repository



Resulting Guidelines
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Topic 3 – Looking Ahead: Future Directions 
and Paths Forward
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DL4SE and SE4DL

68

DL4SE: Leveraging Deep Learning Techniques in order to 
automate or improve existing software engineering tasks

SE4DL: Where Deep Learning Techniques are viewed as a 
new form of software development that needs tool and 
process support
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Future Work on DL4SE



Future Research Directions in DL4SE

70

Combining Features 
Learned via DL with 

Existing Empirical 
Knowledge 

Leveraging & 
Combining 

Heterogenous 
Sources of SE Data

Developing 
Architectures 

tailored for 
SE Data

Systematic & 
Reproducible 

Research 
Methodology

Ethical &
Social 

Considerations 
of DL4SE



Future Research Directions in DL4SE (cont’d)
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Development 
of Tailored 

“Clean” 
Community 

Datasets

Designing new 
Effectiveness 

Metrics for SE-
specific Tasks

HCI Aspects of AI-
assisted Developer 

Tools

New 
Application 

Areas

New
Data 

Sources



Ethical and Social Considerations of DL4SE
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Ethical and Social Considerations of DL4SE
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HCI Aspects of AI-Assisted Developer Tools

74



New Application Areas and Data-Sources

75

Software 
Testing

Potential SE Tasks

Troubleshooting 
Tasks Bug 

Triaging

Code 
Review

Requirements 
Engineering

Potential Data Sets

Tailored 
for SE 
Tasks

IDE 
Instrumentation

Graphical 
Software
Artifacts

EDA for
Datasets



Combining Empirical Knowledge with Deep Learning
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Empirical SE Studies Deep Learning Tools
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Future Work on SE4DL



“Gradient descent can write code better than you. I’m sorry”

-Andrej Karpathy, Director of AI at Tesla

78



“Neural networks are not just another classifier, they represent the beginning 
of a fundamental shift in how we write software. They are Software 2.0.”

-Andrej Karpathy, Director of AI at Tesla

79



Software 1.0 vs. Software 2.0

80

Machine

Data

Data

Program

Output

Output

“Program”

Neural Net



Software 1.0
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1.  /** 
2.  * Add element in the list 
3.  * @param element to add 
4.  * @return true if element added, false otherwise 
5.  */ 
6.  public boolean addElement (Element elem) {
7.    if(myList != null){
8.       myList.add(elem);
9. return true;
10.   }
11.   return false; 
12.  } 



Software 2.0 = DL-based systems

82
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How is Deep Learning Software 2.0?
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Optimization by Gradient Descent to Find “The Program”

84

Program 
Search Space

Software 1.0

Software 2.0

Com
plexity

optimization

Optimal 
minimum

Learning 
Step

Error Gradient

4.4356 ⋯ 0.886
⋮ ⋱ ⋮

4.4356 ⋯ 0.887
Tensor
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Real-world DL-based System (Software 2.0)

ML 
Code

Data
Verification

Machine 
Resources

Management

Analysis 
Tools

Serving
Infrastructure

Monitoring

Process
Management 

Tools

Feature
Extraction

Data
Collection

Config



Yesterday’s Devs vs. Tomorrow's Devs

ML 
Code

Machine 
Resources

Management

Analysis Tools
Serving

Infra-
structure

Monitor
ing

Process
Management 

Tools

Data
Verification Feature

Extraction

Data
Collection

Configuration

ML Code



Will Deep Learning encompass all software?
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Not quite …

But the applications of DL are numerous and growing!
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Will Deep Learning encompass all software?
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Not quite …

But the applications of DL are numerous and growing!



The Transition to Software 2.0
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Image Recognition and Understanding



The Transition to Software 2.0
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Speech Synthesis

Synthesized Voice

Audio and 
Transcription Corpus



The Transition to Software 2.0
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Machine Translation



Benefits of Software 2.0

• Computationally homogeneous

• Simple to bake into silicon

• Constant running time

• Constant memory use

• Portable

• Agile

• System is capable of “self-optimization”

• “Better than programmers” (at least on anything 
involving images/video/sound/speech)

93
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1. Requirement 
Analysis 

2. Design

3. Development

4. Testing

5. Deployment

6. Maintenance

1. Problem & Goals 
Definition

2. Data Collection

3.  Data Preparation

4. Model Learning

5. Model Learning & 
Integration

6. Model 
Management

Traditional SE Development vs. DL Development



SE Challenges for Software 2.0 (or SE4DL)
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Other: security, privacy, 
explainability, reuse

Maintenance 
challenges

Testing Challenges Debugging Challenges

Deployment Challenges

Software 
development 

challenges



Challenges: Software Development for DL
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Versioning
Models

Data 
Labeling

Experiment
Management

Effort 
Estimation

Deriving
Requirements



Challenges: Software Maintenance for DL

Technical 
Debt

Data 
Dependencies

Reliance on
Pre-Trained

Models

Experimental
Code Paths

Configuration
Management

Evolving
Hardware +

Software



Challenges: Software Maintenance for DL

• Code and data technical debt (~95% is glue code)

98

ML 
Code

Data
Verification

Machine 
Resources

Management

Analysis 
Tools

Serving
Infrastructure

Monitoring

Process
Management 

Tools

Feature
Extraction

Data
Collection

Config



Challenges: Testing for DL

99

Testing 
Data

Deployment
Testing

Edge 
Case

Discovery

Non
Determinism

Performance
Testing



Challenges: Testing for DL

• Data replaces code and should be tested rigorously

100

1.  import tensorflow as tf
2.  mnist = tf.keras.datasets.mnist
3. 
4.  (x_train, y_train),(x_test, y_test) = mnist.load_data()
5.  x_train, x_test = x_train / 255.0, x_test / 255.0
6. 
7.  model = tf.keras.models.Sequential([
8.   tf.keras.layers.Flatten(),
9.   tf.keras.layers.Dense(512, activation=tf.nn.relu),
10.  tf.keras.layers.Dropout(0.2),
11.  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
12. ])
13.
14. model.compile(optimizer='adam’,
15.              loss='sparse_categorical_crossentropy’,
16.              metrics=['accuracy’])
17.
18. model.fit(x_train, y_train, epochs=5)
19. model.evaluate(x_test, y_test)

Dataset

Supervised

Model 
Definition

Loss 
Function

Evaluation

Flatten

ReLu   512

Dropout 
p = 0.2

SoftMax 10



Challenges: Testing for DL

• Data replaces code and should be tested rigorously;

• We need to test not only the models, but also 
production-ready systems;

101

ML 
Code

Data
Verification

Machine 
Resources

Management

Analysis Tools

Serving
Infra-

structure

Monitoring

Process
Management 

Tools

Feature
Extraction

Data
CollectionConfig



Challenges: Debugging for DL

Requires
Trained
Model

“Traditional”
Debuggers

Don’t Apply

DNN
Bugs

Bugs can
be Abstract

Bugs in
Dataset

Lazy
Execution



Challenges: Debugging for DL

• We can not estimate the results (and debug the model) 
until the model is trained

• Traditional debugging works in software 1.0

103



Challenges: Debugging for DL

• We can not estimate the results (and debug the model) 
until the model is trained

• Traditional debugging does not work in software 2.0
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1.  import tensorflow as tf
2.  mnist = tf.keras.datasets.mnist
3. 
4.  (x_train, y_train),(x_test, y_test) = mnist.load_data()
5.  x_train, x_test = x_train / 255.0, x_test / 255.0
6. 
7.  model = tf.keras.models.Sequential([
8.   tf.keras.layers.Flatten(),
9.   tf.keras.layers.Dense(512, activation=tf.nn.relu),
10.  tf.keras.layers.Dropout(0.2),
11.  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
12. ])
13.
14. model.compile(optimizer='adam’,
15.              loss='sparse_categorical_crossentropy’,
16.              metrics=['accuracy’])
17.
18. model.fit(x_train, y_train, epochs=5)
19. model.evaluate(x_test, y_test)

Dataset

Supervised

Model 
Definition

Loss 
Function

Evaluation

Flatten

ReLu   512

Dropout 
p = 0.2

SoftMax 10



Challenges: DL Deployment
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Feedback
Loops

Stream
Processing

Distributed
DL

Data
Formatting

Data
Modalities



What are the Next Steps?
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There is still a lot of work to be done!

SE Research

ML/DL Research
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