
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Spring 2024

Week 7 - Class II:
Introduction to

Software Engineering
Research

Administrivia

2

• Industry Speaker Next Week!

• Exams will be graded by Tuesday

• Research Paper Presentation Selection

• Due by end of next week - more details Monday

Software Engineering

The methods and techniques by which developers
design, create, test, and manage software

Software Engineering

The methods and techniques by which developers
design, create, test, and manage software

Software Engineering

My research goal: Design tailored automated approaches to
help facilitate developer needs throughout the software

development and maintenance lifecycle.

Research Goal: Design tailored automated approaches to
help facilitate developer needs throughout the software

development and maintenance lifecycle.

The methods and techniques by which developers
design, create, test, and manage software

Software Engineering

Blend scientific discovery with practical significance

PRACTICAL SIGNIFICANCE

PRACTICAL SIGNIFICANCE

Blend scientific discovery with practical significance

Blend scientific discovery with practical significance

PRACTICAL SIGNIFICANCE

How Can We Design Practical Automation?

How Can We Design Practical Automation?

UNDERSTANDING DEVELOPER NEEDS

MINING SOFTWARE REPOSITORIES

MINING SOFTWARE REPOSITORIES

MINING SOFTWARE REPOSITORIES

Source Code
Files

Software
Documentation

Screenshots

Screen
Recordings

Bug Reports
Design

Documents

LEARNING PATTERNS FROM SOFTWARE DATA

Source Code
Files

Software
Documentation

Screenshots
Screen

Recordings
Bug Reports

Design
Documents

LEARNING PATTERNS FROM SOFTWARE DATA

Source Code
Files

Software
Documentation

Screenshots
Screen

Recordings
Bug Reports

Design
Documents

Software
Repository Data

Machine
Learning

Salient
Patterns

Requirements
Analysis

DesignMaintenance

Testing Implementation

SOFTWARE DEVELOPMENT LIFECYCLE

HOW SOFTWARE ENGINEERING RESEARCH WORKS

SE RESEARCH PROJECT ROADMAP

Develop
Idea

Read
Related

Work

Design
Approach

Build
Approach

Evaluate
Approach

Write
Paper!

Design
Study

Conduct Survey/
Collect Data

Analyze
Data

Write
Paper!

TYPICAL SE RESEARCH TOPICS

AI and software engineering:
• Search-based software engineering
• Machine learning with and for SE
• Recommender systems
• Autonomic systems and self adaptation
• Program synthesis
• Program repair

Testing and analysis:
• Software testing
• Program analysis
• Debugging and Fault localization
• Programming languages
• Performance
• Mobile applications

Software analytics:
• Mining software repositories
• Apps and app store analysis
• Software ecosystems
• Configuration management
• Software visualization

Software evolution:
• Evolution and maintenance
• API design and evolution
• Release engineering and DevOps
• Software reuse
• Refactoring
• Program comprehension
• Reverse engineering

Social aspects of software engineering:
• Human aspects of software engineering
• Human-computer interaction
• Distributed and collaborative software engineering
• Agile methods and software processes
• Software economics
• Crowd-based software engineering
• Ethics in software engineering
• Green and sustainable technologies

Requirements, modeling, and design:
• Requirements Engineering
• Privacy and Security by Design
• Modeling and Model-Driven Engineering
• Software Architecture and Design
• Variability and product lines
• Software services

Dependability:
• Formal methods
• Validation and Verification
• Reliability and Safety
• Privacy and Security
• Embedded and cyber-physical systems

SE RESEARCH VENUES

Conferences

International Conference on
Software Engineering (ICSE)

Symposium on the Foundations
of Software Engineering (FSE)

International Conference on
Automated Software Engineering (ASE)

International Conference on Software
Maintenance & Evolution (ICSME)

International Conference on Mining
Software Repositories (MSR)

International Symposium on Software
Testing and Analysis (ISSTA)

Journals

IEEE Transactions on
Software Engineering

ACM Transactions on
Software Engineering

& Methodology

Springer Empirical
Software Engineering

Deep Learning & Software Engineering
–

A Retrospective and Paths Forward

SWE 795 – Intersections of Deep Learning & Software Engineering

Thursday, January 27th, 2022

Kevin Moran, Ph.D.

George Mason University

2

Talk Outline

• Topic 1 - Background: The Evolution of Machine Learning
(ML) to Deep Learning (DL)

• Topic 2- DL4SE: The Current State of Research

• Topic 3 – Looking Forward: Future Directions and Paths
Forward

3

4

Topic 1 – Background: The Evolution of Machine
Learning to Deep Learning

What is Machine Learning?

5

A branch of Artificial Intelligence that
allows computers to infer patterns

from data, which can be used for the
prediction of new data points

The Hierarchy of Artificial Intelligence

6

Artificial Intelligence

Machine Learning

Representational Learning

Deep Learning

Machine Learning Taxonomy

Supervised
Learning

Continuous
Target Variable

Categorical
Target Variable

Regression Classification

Medical Imaging
Housing Price

Prediction

Unsupervised
Learning

Target Variable Not Available

Clustering Association

Customer
Segmentation

Grocery Bag
Analysis

Machine Learning Taxonomy

8

Reinforcement
Learning

Categorical
Target Variable

Target Variable
Not Available

Classification Control

Optimized
Marketing

Driverless Cars

Semi-Supervised
Learning

Categorical Target Variable

Classification Clustering

Lane-finding on
GPS data

Text
Classification

ML Representations

9

Supervised
Learning

Unsupervised
Learning

Semi-Supervised
Learning

Reinforcement
Learning

Self-Training of
Existing Classifiers

Hidden Markov
Models

Multiple Gaussian
Distributions

Semi-supervised
support vector
machines

K Nearest
Neighbor

Naïve Bayes

Decision Trees

Linear Regression

Support Vector
Machine

K-means clustering

Association rule
learning

Q-Learning

Temporal Difference Canonical
Representation

Machine Learning vs. Traditional Programming

10

Machine

Machine

Data

Data

Program

Output

Output

“Program”

When do We Need Machine Learning?

11

The Data The Pattern

No Possible Equation

Three Conditions:

1. We have an Existing Dataset

2. A pattern exists in the data

3. The pattern is not easily
defined by an equation

The Computational Learning Process

12

First Approx. Second Approx.

Learning Process

Target Function

Supervised ML Applied to Image Classification

13

Data Model

0
1
2
3
4

0 2 4

Adjustment

Classification

Birds Bears

Important Note!

Our future examples focus on Supervised Learning for Images

However, the same principles apply to other types of data
(natural language and code) and learning methods (Unsupervised

and Reinforcement).

The Five Elements of the Learning Process

14

Input {Bird, Bear}Output

Target
Function

F(x) Hypothesis G(x) ≈ F(x)

Data

Feature Engineering for “Canonical” Machine Learning

15

Images Text

This is a sentence

This is a sentence

0 1 2 3 4 5

Class
Grant
Learn
Coarse

Source Code

A

B

E
D

F

C

“Canonical” ML Image Classification

23

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

Bird

Bear

On the Large-Scale ImageNet Dataset,
which contains millions of images

from over 1000 categories

Canonical ML techniques have only been
able to achieve ~ 60% accuracy

Shortcomings of Traditional ML Techniques

24

Manually
Derived
Features

Complex
Kernels

Shallow
Representation

101101101

The Advent of Deep Learning

25
“Canonical” Machine Learning Deep Learning

Input

101101101

Feature
Mapping

Output Bird

Input

Feature
Mapping

Output Bear

Rich Hierarchical
Feature

“Embedding”

ML Representations

26

Supervised
Learning

Unsupervised
Learning

Semi-Supervised
Learning

Reinforcement
Learning

Self-Training of
Existing Classifiers

Hidden Markov
Models

Multiple Gaussian
Distributions

Semi-supervised
support vector
machines

K Nearest
Neighbor

Naïve Bayes

Decision Trees

Linear Regression

Support Vector
Machine

K-means clustering

Association rule
learning

Q-Learning

Temporal Difference Canonical
Representation

Deep
Representation

Neural Networks
(Convolutional,
Recurrent, Feed-
forward, etc.

Autoencoders

Deep Belief
Networks

Generative
Adversarial
Networks (GANs)

Neural networks

Autoencoders

Deep Adversarial
Networks

Deep Q-Learning

Neurons: The Building Blocks of Rich Features

27

x1

.

.

.

x2

x3

xn

b

BiasInput

w1

w2

w3

wn

Weights

! " = max(0, ")

ReLU Activation Function

Additional Activation
Functions

• Identity
• Binary Step
• Sigmoid
• Tanh
• Leaky ReLU
• Softmax

Neural “Networks” for Rich Embeddings

28

Handwritten
Digits

Visualized
Rich Embedding

Space

Automated Feature Discovery

29

h

X

Y

Unfolded hhh

Feature Extraction

Feature Extraction

… …

Feature Extraction

Text (Natural Language)Code

Images

Convolutions Pooling

How Can a Model Learn from Deep Embeddings?

30

Adjust the Neuron “weights” according to errors
made on a given task.

How Can a Model Learn from Deep Embeddings?

31

Bear

Adjustment

w4

w3w2

w1

32

Stochastic Gradient DecentBatch Gradient Decent

Local
minimum

Optimal
minimum

Learning
Step

Mini-
Batch

Gradient
Decent

How Should the Weights be Updated?

Local
minimum

Optimal
minimum

Learning
Step

Error Gradient Error Gradient

CNN-Accuracy

35

ConvNets have surpassed human levels of
accuracy on the ImageNet classification dataset

Deep Learning Advantages and Drawbacks

36

Advantages Disadvantages
• Does not require

manual feature
engineering

• Capable of
Learning Rich,
Hierarchal Data
Representations

• Can be trained for
a given task end-
to-end

• Require massive
datasets to
function
effectively

• Computationally
expensive to train

• Models can
difficult to
interpret (Black
Box)

37

Topic 2 – DL4SE: The Current State of Research

Mining Software Repositories

Automation in Software Engineering Research

39

Source Code
Files

Software
Documentation Screenshots

Screen
Recordings Bug Reports Design

Documents

Automation in Software Engineering Research

40

Source Code
Files

Software
Documentation

Screenshots
Screen
Recordings

Bug Reports
Design
Documents

Software
Repository Data

Deep
Learning

Salient
Patterns

41

What is the current state-of-the-art of DL4SE?

Systematic Literature Review

Systematic Literature Review

Research Questions (RQs) centered upon the “components of learning”

Systematic Literature Review

Research Questions (RQs) centered upon the “components of learning”

Systematic Literature Review

– RQ1: Target Function (SE Task)

– RQ2: Data (Training/Testing Data)

– RQ3: Learning Model (Algorithm
+ Hypothesis Set)

– RQ4: Final Hypothesis (Results)

– RQ5: Reproducibility and
Replicability

Systematic Literature Review

• Time Period: 2009-(mid)2019

• Venues: ICLR, NeurIPS, FSE, ICML, MSR, ISSTA, ICST,
ICSE, ASE, ICSME, TSE, TOSEM, EMSE, OOPSLA, ICPC,
PLDI, AAAI, IJCAI.

• Methodology: Following Kitchenham, et.al.

46

SLR Search Process

Publication Distribution By Venue

ICML MSR TSE ASE FSE NIPS ICSE ICSME ICLR ISSTA ArXiv
EMSE PLDI AAAI ICPC OOPSLA ICST

ICML

MSR TSEASE

FSE

NeurIPS

ICSE ICSME

ICLR

ISSTA

arXiv

EMSE PLDI

AAAI

ICPC

OOPSLA

ICST

49

RQ1: Target Function (SE Task)

DL4SE Publications Over Time and SE Tasks

1

8

9

25

59

26

0 20 40 60

2014

2015

2016

2017

2018

2019

1
2
1

1

1
1

1

1

1
2

1

1

1

1

2

1
1

2

4

2
4

1
1

6
1
1
1

5
1

4
4

2
1

3
2

5

13
2

5
5

2

1
1
1
1
1

4
2
1

1
4

3
3

2

1

1
1

1

2

0 2 4 6 8 10 12 14 16 18 20 22

Code Comprehension
Souce Code Generation

Source Code Retrieval & Traceability
Source Code Summarization

Bug-Fixing Process
Code Smells

Software Testing
Generating Non Code Artifacts

Clone Detection
Software Energy Metrics

Program Synthesis
Image To Structured Representation

Software Security
Program Repair

Software Reliability / Defect Prediction
Feature Location

Developer Forum Analysis
Program Translation

Software Categorization
Code Location Within Media

Developer Intention Mining
Software Resource Control

51

RQ2: Data (Training/Testing Data)

Data Used in DL4SE Approaches by SE Task

0 10 20 30 40 50 60 70 80 90 100

Source Code
Natural Language Descriptions

Program Input-Output Examples
Bug Report

Labeled UI Components
Source Code Diffs

Tabular Data
GitHub Issues

LDA Topics
Time Measurements

PPBE Tasks
Vision: Images or Video

Execution Traces
Contextual Flow Graphs

Karel DSL Grid
Android Intents & Filters

Symbolic Equations
Certificates

Proof Strategies
Cursor Position

Code Comprehension
Souce Code Generation
Source Code Retrieval & Traceability
Source Code Summarization
Bug-Fixing Process
Code Smells
Software Testing
Generating Non Code Artifacts
Clone Detection
Software Energy Metrics
Program Synthesis
Image To Structured Representation
Software Security
Program Repair
Software Reliability / Defect Prediction
Feature Location
Developer Forum Analysis
Program Translation
Software Categorization
Code Location Within Media
Developer Intention Mining
Software Resource Control

Data Processing Techniques by SE Task

54

RQ2: Learning Model (Algorithm + Hypothesis Set)

DL4SE Neural Network Architectures

DL4SE Neural Network Architectures

2

1

1

1

2

1

1

3

5

2

2

4

2

1

2

1

2

1

3

1

2

1

2

1

3

2

1

3

1

2

1

1

7

14

4

3

1

3

1

4

3

2

1

2

3

1

1

1

1

2

2

1

2

3

1

3

1

1

2

2

1

1

1

1

1

1

1

1

1

1

1

2

1

1

2

0 5 10 15 20 25

Code Comprehension
Program Synthesis

Souce Code Generation
Source Code Retrieval

Source Code Summarization
Bug-Fixing Process

Code Smells
Software Testing

Generating Non Code Artifacts
Clone Detection

Software Energy Metrics
Image To Structured Representation

Software Security
Program Repair

Software Reliability
Feature Location

Developer Forum Analysis
Program Translation

Software Categorization
Developer Intention Mining
Software Resource Control

1

1

2

2

3

3

4

7

9

17

20

29

51

0 20 40 60

Neural GPU

Type-direct. Encoder

Neural Log-Bilinear

Deep Belief Networks

Rest. Boltzman Mach

GANs

Siamese

Graph NN

AutoEncoder

FNN

CNN

Encoder-Decoder

RNN

DL4SE Techniques to Combat Overfitting

0 10 20 30 40

Early Stopping

Dropout

Data Cleaning

L# Norm Reg.

Large Dataset

Cross Validation

Ensemble

Data Augmentation

Data Balancing

Batch Norm

Gradient Clipping

Hyperparam Tuning

Pretraining

Custom

Did Not Discuss

Code Comprehension
Souce Code Generation
Source Code Retrieval & Traceability
Source Code Summarization
Bug-Fixing Process
Code Smells
Software Testing
Generating Non Code Related Artifacts
Clone Detection
Software Energy Metrics
Program Synthesis
Image To Structured Representation
Software Security
Program Repair
Software Reliability / Defect Prediction
Feature Location
Developer Forum Analysis
Program Translation
Software Categorization
Code Location Within Media
Developer Intention Mining
Software Resource Control

58

RQ4: Final Hypothesis (Results)

DL4SE Benchmarks

0

5

10

15

20

25

Code C
ompreh

ensio
n

Souce Code G
enera

tio
n

Source
 Code R

etr
iev

al &
 Tracea

bilit
y

Source
 Code S

ummari
zatio

n

Bug-Fixing Proces
s

Code S
mells

Softw
are

 Test
ing

Genera
tin

g Non Code R
ela

ted
 Artif

acts

Clone Dete
cti

on

Softw
are

 Energ
y M

etr
ics

Program
 Synthesis

Im
age To Stru

ctu
red Represen

tat
ion

Softw
are

 Secu
rity

Program
 Repair

Softw
are

 Relia
bilit

y / D
efe

ct P
red

ict
ion

Feature
Locat

ion

Deve
loper

Forum Analysis

Program
 Tran

sla
tio

n

Softw
are

 Cate
goriza

tio
n

Code L
ocatio

n W
ith

in M
edia

Deve
loper

Intentio
n M

ining

Softw
are

 Reso
urce

 Contro
l

Industry Provided
Self Generated and Available
Previous Benchmark
Self Generated

Claimed DL4SE Impact

1

13

49

5 6

24

12

0

10

20

30

40

50

60

Open
Vocabulary

Issue

Increased
Performance

Over
Predeccesor

Increased
Automation /

Efficiency

Increased
Understanding

of the Topic

Solving
Previously
Unsolvable
Problems

Advanced
Architecture /

Novelty

Replacing
Expertise

Consideration of Occam’s Razor

Consideration of Occam’s Razor

26 (15.9%)

40 (24.4%)

70 (42.7%)

28 (17.1%)

No Consideration Varied Model Baseline Comparison Both

28 (17.1%) 26 (15.9%)

70 (42.7%)

40 (24.4%)

No Consideration Varied Model Baseline Comparison Both

63

RQ5: Reproducibility & Replicability

Non-Reproducibility Factors

31

26

38

22

14
2143

13

54

52

Learning Algorithm Loss Function

Hyperparameters Training/Val/Testing Details
Embedding Details Regularization Techniques
Exploratory Data Analysis Extraction Details

Missing Filtering Details No Repository

Resulting Guidelines

66

Topic 3 – Looking Ahead: Future Directions
and Paths Forward

67

DL4SE and SE4DL

68

DL4SE: Leveraging Deep Learning Techniques in order to
automate or improve existing software engineering tasks

SE4DL: Where Deep Learning Techniques are viewed as a
new form of software development that needs tool and
process support

69

Future Work on DL4SE

Future Research Directions in DL4SE

70

Combining Features
Learned via DL with

Existing Empirical
Knowledge

Leveraging &
Combining

Heterogenous
Sources of SE Data

Developing
Architectures

tailored for
SE Data

Systematic &
Reproducible

Research
Methodology

Ethical &
Social

Considerations
of DL4SE

Future Research Directions in DL4SE (cont’d)

71

Development
of Tailored

“Clean”
Community

Datasets

Designing new
Effectiveness

Metrics for SE-
specific Tasks

HCI Aspects of AI-
assisted Developer

Tools

New
Application

Areas

New
Data

Sources

Ethical and Social Considerations of DL4SE

72

Ethical and Social Considerations of DL4SE

73

HCI Aspects of AI-Assisted Developer Tools

74

New Application Areas and Data-Sources

75

Software
Testing

Potential SE Tasks

Troubleshooting
Tasks Bug

Triaging

Code
Review

Requirements
Engineering

Potential Data Sets

Tailored
for SE
Tasks

IDE
Instrumentation

Graphical
Software
Artifacts

EDA for
Datasets

Combining Empirical Knowledge with Deep Learning

76

Empirical SE Studies Deep Learning Tools

77

Future Work on SE4DL

“Gradient descent can write code better than you. I’m sorry”

-Andrej Karpathy, Director of AI at Tesla

78

“Neural networks are not just another classifier, they represent the beginning
of a fundamental shift in how we write software. They are Software 2.0.”

-Andrej Karpathy, Director of AI at Tesla

79

Software 1.0 vs. Software 2.0

80

Machine

Data

Data

Program

Output

Output

“Program”

Neural Net

Software 1.0

81

1. /**
2. * Add element in the list
3. * @param element to add
4. * @return true if element added, false otherwise
5. */
6. public boolean addElement (Element elem) {
7. if(myList != null){
8. myList.add(elem);
9. return true;
10. }
11. return false;
12. }

Software 2.0 = DL-based systems

82

2

1

3

1

2

3

1

2

3

1

2

Bear

-4.4356

-4.4356

-4.4356

-4.4356

-4.4356

σ!

σ"

σ#

-0.3656

-0.3656

-0.3656

-0.3656

-0.3656

0.886

0.886

0.886

0.886

0.886

0.600

0.400

How is Deep Learning Software 2.0?

83

Optimization by Gradient Descent to Find “The Program”

84

Program
Search Space

Software 1.0

Software 2.0

Com
plexity

optimization

Optimal
minimum

Learning
Step

Error Gradient

4.4356 ⋯ 0.886
⋮ ⋱ ⋮

4.4356 ⋯ 0.887
Tensor

85

Real-world DL-based System (Software 2.0)

ML
Code

Data
Verification

Machine
Resources

Management

Analysis
Tools

Serving
Infrastructure

Monitoring

Process
Management

Tools

Feature
Extraction

Data
Collection

Config

Yesterday’s Devs vs. Tomorrow's Devs

ML
Code

Machine
Resources

Management

Analysis Tools
Serving

Infra-
structure

Monitor
ing

Process
Management

Tools

Data
Verification Feature

Extraction

Data
Collection

Configuration

ML Code

Will Deep Learning encompass all software?

87

Not quite …

But the applications of DL are numerous and growing!

Will Deep Learning encompass all software?

88

Not quite …

But the applications of DL are numerous and growing!

Will Deep Learning encompass all software?

89

Not quite …

But the applications of DL are numerous and growing!

The Transition to Software 2.0

90

Image Recognition and Understanding

The Transition to Software 2.0

91

Speech Synthesis

Synthesized Voice

Audio and
Transcription Corpus

The Transition to Software 2.0

92

Machine Translation

Benefits of Software 2.0

• Computationally homogeneous

• Simple to bake into silicon

• Constant running time

• Constant memory use

• Portable

• Agile

• System is capable of “self-optimization”

• “Better than programmers” (at least on anything
involving images/video/sound/speech)

93

94

1. Requirement
Analysis

2. Design

3. Development

4. Testing

5. Deployment

6. Maintenance

1. Problem & Goals
Definition

2. Data Collection

3. Data Preparation

4. Model Learning

5. Model Learning &
Integration

6. Model
Management

Traditional SE Development vs. DL Development

SE Challenges for Software 2.0 (or SE4DL)

95

Other: security, privacy,
explainability, reuse

Maintenance
challenges

Testing Challenges Debugging Challenges

Deployment Challenges

Software
development

challenges

Challenges: Software Development for DL

96

Versioning
Models

Data
Labeling

Experiment
Management

Effort
Estimation

Deriving
Requirements

Challenges: Software Maintenance for DL

Technical
Debt

Data
Dependencies

Reliance on
Pre-Trained

Models

Experimental
Code Paths

Configuration
Management

Evolving
Hardware +

Software

Challenges: Software Maintenance for DL

• Code and data technical debt (~95% is glue code)

98

ML
Code

Data
Verification

Machine
Resources

Management

Analysis
Tools

Serving
Infrastructure

Monitoring

Process
Management

Tools

Feature
Extraction

Data
Collection

Config

Challenges: Testing for DL

99

Testing
Data

Deployment
Testing

Edge
Case

Discovery

Non
Determinism

Performance
Testing

Challenges: Testing for DL

• Data replaces code and should be tested rigorously

100

1. import tensorflow as tf
2. mnist = tf.keras.datasets.mnist
3.
4. (x_train, y_train),(x_test, y_test) = mnist.load_data()
5. x_train, x_test = x_train / 255.0, x_test / 255.0
6.
7. model = tf.keras.models.Sequential([
8. tf.keras.layers.Flatten(),
9. tf.keras.layers.Dense(512, activation=tf.nn.relu),
10. tf.keras.layers.Dropout(0.2),
11. tf.keras.layers.Dense(10, activation=tf.nn.softmax)
12.])
13.
14. model.compile(optimizer='adam’,
15. loss='sparse_categorical_crossentropy’,
16. metrics=['accuracy’])
17.
18. model.fit(x_train, y_train, epochs=5)
19. model.evaluate(x_test, y_test)

Dataset

Supervised

Model
Definition

Loss
Function

Evaluation

Flatten

ReLu 512

Dropout
p = 0.2

SoftMax 10

Challenges: Testing for DL

• Data replaces code and should be tested rigorously;

• We need to test not only the models, but also
production-ready systems;

101

ML
Code

Data
Verification

Machine
Resources

Management

Analysis Tools

Serving
Infra-

structure

Monitoring

Process
Management

Tools

Feature
Extraction

Data
CollectionConfig

Challenges: Debugging for DL

Requires
Trained
Model

“Traditional”
Debuggers

Don’t Apply

DNN
Bugs

Bugs can
be Abstract

Bugs in
Dataset

Lazy
Execution

Challenges: Debugging for DL

• We can not estimate the results (and debug the model)
until the model is trained

• Traditional debugging works in software 1.0

103

Challenges: Debugging for DL

• We can not estimate the results (and debug the model)
until the model is trained

• Traditional debugging does not work in software 2.0

104

1. import tensorflow as tf
2. mnist = tf.keras.datasets.mnist
3.
4. (x_train, y_train),(x_test, y_test) = mnist.load_data()
5. x_train, x_test = x_train / 255.0, x_test / 255.0
6.
7. model = tf.keras.models.Sequential([
8. tf.keras.layers.Flatten(),
9. tf.keras.layers.Dense(512, activation=tf.nn.relu),
10. tf.keras.layers.Dropout(0.2),
11. tf.keras.layers.Dense(10, activation=tf.nn.softmax)
12.])
13.
14. model.compile(optimizer='adam’,
15. loss='sparse_categorical_crossentropy’,
16. metrics=['accuracy’])
17.
18. model.fit(x_train, y_train, epochs=5)
19. model.evaluate(x_test, y_test)

Dataset

Supervised

Model
Definition

Loss
Function

Evaluation

Flatten

ReLu 512

Dropout
p = 0.2

SoftMax 10

Challenges: DL Deployment

105

Feedback
Loops

Stream
Processing

Distributed
DL

Data
Formatting

Data
Modalities

What are the Next Steps?

106

There is still a lot of work to be done!

SE Research

ML/DL Research

Acknowledgements – DL4SE Survey

107

Nathan Cooper

Cody Watson

Denys Poshyvanyk

David Nader Palacio

Acknowledgements – DLSE Workshop

108108

Co-Chairs

Denys Poshyvanyk Baishakhi Ray

Steering Committee

Prem Devanbu Matthew Dwyer

Michael Lowry

Rishabh Singh

Xiangyu Zhang

Sebastian Elbaum

