
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Spring 2024

Week 6 - Class II:
Open Source
Software +

Security

Administrivia

2

• Assignment 4

• Due Monday

• Exploring Static Analysis Tools and CI with a simple Python app

• Accept the Assignment on GitHub Classroom

• SDE Project Part 2

• Due Friday, March 1st

• Will get you Feedback on your plan by tomorrow EoD!

• Two parts:

• Process & Implementation Snapshot

• Checkpoint Presentation

• Grades

• Assignment 2+ SDE project released

• We are working on Assignment 3

• Assignment 1 and all Quizzes/In-class activities will be posted today

Administrivia

3

• SDE Project Backlog

• Some Tips:

• Relate your Backlog to your User Stories

• Break down each user story into multiple tasks
(probably 3-4 is reasonable, but use your best
judgment)

• Describe the technical details of how you will
complete each issue and estimate how long it will take

• Schedule issues across milestones

• Assign teammates to issues!

• 2 Parts, In-class exam, closed book, 200 points total

• Part 1: Multiple Choice

• 12-15 questions

• Will test basic knowledge of concepts, select the best answer for
each question

• Part 2: Short Answer Questions

• 4-5 questions

• Concepts from class, SE scenarios, answer in a paragraph

• Covers material from Weeks 1-6

• You will have the entire class period to complete the exam

• Please bring your UCF ID to the exam
4

Midterm Exam Format

Open-Source Software

5

Learning Goals

6

• Distinguish between open-source software, free software, and
commercial software.

• Identify the common types of software licenses and their
implications.

• Distinguish between copyright and intellectual property.

• Express an educated opinion on the philosophical/political debate
between open source and proprietary principles.

• Describe how open-source ecosystems work and evolve, in terms
of maintainers, community contribution, and commercial backing

• Identify various concerns of commercial entities in leveraging
open-source, as well as strategies to mitigate these.

The Importance of Open-Source

7

What is Open Source Software?

8

What is Open Source Software?

9

• Source code availability

• Right to modify and creative derivative works

• (Often) Right to redistribute derivate works

Contrast with Proprietary Software: A Black Box

10

• Intention is to be used, not examined, inspected, or
modified.

• No source code – only download a binary (e.g., an app)
or use via the internet (e.g., a web service).

• Often contains an End User License Agreement (EULA)
governing rights and liabilities.

• EULAs may specifically prohibit attempts to understand
application internals.

Contrast with Proprietary Software: A Black Box

11

Free Software vs. Open Source

12

• Free software origins (70-80s ~Stallman)
• Cultish Political goal
• Software part of free speech

• free exchange, free modification
• proprietary software is unethical
• security, trust

• GNU project, Linux, GPL license

• Open source (1998 ~O'Reilly)
● Rebranding without political legacy
● Emphasis on internet and large dev/user involvement
● Openness toward proprietary software/coexist
● (Think: Netscape becoming Mozilla)

Free Software vs. Open Source

13

Perception (from some):  
• Anarchy

• Demagoguery  
• Ideology 
• Altruism

Open-Source Ecosystems

14

The Cathedral and the Bazaar

15

The Bazaar Won

16

• Developed centrally by a core 
group of members

• Available for all once complete 
(or at releases)

• Examples: GMU Emacs, GCC  
(back in the 1990s)

• “Sort of” examples today: Chrome 
Intellij

• Developed openly and  
organically

• Wide participation (in theory,  
anyone can contribute) 
Examples: Linux

Cathedral Bazaar

OSS has many stakeholders / contributors

17

• Core members
• Often (but not always) includes the original creators
• Direct push access to main repository
• May be further split into admin roles and developers

• External contributors
• File bug reports and report other issues
• Contribute code and documentation via pull requests

• Other supporters
• Beta testers (users)
• Sponsors (financial or platform)
• Steering committees or public commenters (for standards and
RFCs)

• Spin-offs
• Maintainers of forks of the original repository

Contributing Processes

18

• Mature OSS projects often have strict contribution
guidelines
• Look for CONTRIBUTING.md or similar

• Common requirements:
• Coding style (recall: linters) and passing static checks
• Inclusion of test cases with new code
• Minimum number of code reviews from core devs
• Standards for documentation
• Contributing licensing agreements (more on that later)

Governance

19

• Some OSS projects are managed by for-profit firms
• Examples: Chromium (Google), Moby (Docker), Ubuntu (Canonical), TensorFlow
(Google), PyTorch (Meta), Java (Oracle)

• Contributors may be a mix of employees and community volunteers

• Corporations often fund platforms (websites, test servers, deployments, repository
hosting, etc.)

• Corporations usually control long-term vision and feature roadmap

• Many OSS projects are managed by non-profit foundations or ad- hoc communities
• Examples: Apache Hadoop/Spark/Hbase/Kafka/Tomcat (ASF), Firefox (Mozilla),
Python (PSF), NumPy (community)

• Foundations fund project infrastructure via charitable donations

• Long-term vision often developed via a collaborative process (e.g., Apache) or by
benevolent dictators (e.g., Python, Linux)

• Corporations still heavily rely on community-owned OSS projects • Many OSS non-
profits are funded by Big Tech (e.g., Mozilla by Google)

Example: Apache

20

Corporate Outlook Towards Open-source

21

Risks in not Open-Sourcing?

22

Use of Open-Source Software in Companies

23

• Is the license compatible with our intended use?
• More on this later

• How will we handle versioning and updates?
• Does every internal project declare its own versioned dependency or
do we all agree on using one fixed (e.g., latest) version?
• Sometimes resolved by assigning internal “owners” of a third-party
dependency, who are responsible for testing updates and declaring
allowable versions.

• How to handle customization of the OSS software?
• Internal forks are useful but hard to sync with upstream changes.
• One option: Assign an internal owner who keeps internal fork up-to-
date with upstream.
• Another option: Contribute all customizations back to upstream to
maintain clean dependencies.

• Security risks? Supply chain attacks on the rise.

Use of Open-Source Software in Companies

24

Software Licenses

25

Note: I am not a lawyer (this is not legal advice)

Most popular Software Licenses

26

Which License to Choose?

27

GNU General Public License: the Copyleft License

28

• Nobody should be restricted by the software they
use. There are four freedoms that every user should
have:
● the freedom to use the software for any purpose,
● the freedom to change the software to suit your
needs,
● the freedom to share the software with your friends
and neighbors, and
● the freedom to share the changes you make.

• Code must be made available

• Any modifications must be relicensed under the same
license (copyleft)

Risks of “Copyleft” Licenses

29

• Nobody should be restricted by the software they
use. There are four freedoms that every user should
have:
● the freedom to use the software for any purpose,
● the freedom to change the software to suit your
needs,
● the freedom to share the software with your friends
and neighbors, and
● the freedom to share the changes you make.

• Code must be made available

• Any modifications must be relicensed under the same
license (copyleft)

Lesser GNU Public License (LGPL)

30

• Software must be a library

• Similar to GPL but does not consider dynamic binding
as “derivative work”

• So, proprietary code can depend on LGPL libraries as
long as they are not being modified

• See also: GPL with classpath exception (e.g., Oracle
JDK)

MIT License

31

• Simple, commercial-friendly license

• Must retain copyright credit

• Software is provided as is

• Authors are not liable for software

• No other restrictions

Risk: Incompatible Licenses

32

• Sun open-sourced OpenOffice, but when Sun was
acquired by Oracle, Oracle temporarily stopped the
project.

• Many of the community contributors banded together
and created LibreOffice

• Oracle eventually released OpenOffice to Apache

• LibreOffice changed the project license so LibreOffice
can copy changes from OpenOffice but OpenOffice
cannot do the same due to license conflicts

Copyright vs. Intellectual Property

33

• IP and Patents cover an idea for solving a problem
• Examples: Machine designs, pharma processes to
manufacture certain drugs, (controversially) algorithms
• Have expiry dates. IP can be licensed or sold/
transferred for $$$.

• Copyrights cover particular expressions of some work
• Examples: Books, music, art, source code
• Automatic copyright assignment to all new work
unless a license authorizes alternative uses.

• Exceptions for trivial works and ideas.

Contributor License Agreements (CLA)

34

• Often a requirement to sign these before you can
contribute to OSS projects

• Scoped only to that project

• Assigns the maintainers specific rights over code that
you contribute

• Without this, you own the copyright and IP for even
small bug fixes and that can cause them legal
headaches in the future

Summary

35

• Open-source software harnesses the collective power of
stakeholders not directly associated with main developers

• Open-source ecosystems thrive in many application
domains where reuse is common (e.g., platforms,
frameworks, libraries)

• Corporations rely on open-source even if they develop
proprietary software or services.

• Open-source licenses must be chosen carefully to align
with intended use case.

• You will all contribute to OSS in this class!

