
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Spring 2024

Week 4 - Class 1I:
Static & Dynamic

Analysis

Administrivia

2

• Assignment 2 Due Today

• Assignment 3 & SDE Project Part 1

• Will be posted today

• Both will be due Thursday February 8th

• Get started early!!

Intro to Software Architecture

3

Why Document Architecture?

4

• Blueprint for the system
• Artifact for early analysis
• Primary carrier of quality attributes
• Key to post-deployment maintenance and enhancement

• Documentation speaks for the architect, today and 20
years from today

• As long as the system is built, maintained, and evolved
according to its documented architecture

• Support traceability.

Views & Purposes

5

• Every view should align with a purpose

• • Views should only represent information relevant to that purpose

• Abstract away other details

• Annotate view to guide understanding where needed

• • Different views are suitable for different reasoning aspects (different quality
goals), e.g.,

• Performance

• Extensibility

• Security

• Scalability

• ...

Common Views in Documenting Software Architecture

6

• Static View

• Modules (subsystems, structures) and their relations
(dependencies, ...)

• Dynamic View

• Components (processes, runnable entities) and
connectors (messages, data flow, ...)

• Physical View (Deployment)

• Hardware structures and their connections

Common Software Architectures

7

1. Pipes & Filters

8

Pipes & Filters Example: Compilers

9

2. Object Oriented Organization

10

3. Event-Driven Architecture

11

Example: HTML DOM + Javascript

12

4. Blackboard Architecture

13

5. Layered Systems

14

Example Internet Protocol Suite

15

Example Internet Protocol Suite

16

Microservices

17

Why We Need Backends

• Security: SOME part of our code needs to be “trusted”

• Validation, security, etc. that we don’t want to allow users to bypass

• Performance:

• Avoid duplicating computation (do it once and cache)

• Do heavy computation on more powerful machines

• Do data-intensive computation “nearer” to the data

• Compatibility:

• Can bring some dynamic behavior without requiring much JS support

18

Dynamic Web Apps

19

Web “Front End”What th
e user in

teracts with

What th
e fro

nt end interacts with

Persistent
Storage

Some other
APIs

Presentation
Some logic

Data storage
Some other logic

Frontend programming
(later in course)

Web “Front End”

“Back End”

Where Do We Put the Logic?

20

Persistent
Storage

Some
other APIs

Presentation

Some logic

Data storage

Some other logic

What th
e user in

teracts with

What th
e fro

nt end interacts with

Frontend Pros
Very responsive (low latency)

Frontend Cons
Security

Performance

Unable to share between front-ends

Backend Pros
Easy to refactor between multiple

clients

Logic is hidden from users (good for

security, compatibility, etc.)

Backend Cons
Interactions require a round-trip to

server

Web “Front End”

“Back End”

Why Trust Matters

• Example: Banking app

• Imagine a banking app where the following code runs in the browser:
function updateBalance(user, amountToAdd)
{
 user.balance = user.balance + amountToAdd;
}

• What’s wrong?

• How do you fix that?

21

What Does our Backend Look Like?

22

Our own backend

Connection to
FrontendWeb “Front End”

AJAX

Logic

Persistent Data

The “Good” Old Days of Backends

23

HTTP Request
GET	/myApplicationEndpoint	HTTP/1.1	
Host:	cs.ucf.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Runs a program

Web Server
Application

My
Application
Backend

Give	me	/myApplicationEndpoint

Here’s	some	text	to	send	back

Does whatever it wants

24

What’s wrong with this picture?

History of Backend Development

• In the beginning, you wrote whatever you wanted using whatever
language you wanted and whatever framework you wanted

• Then… PHP and ASP

• Languages “designed” for writing backends

• Encouraged spaghetti code

• A lot of the web was built on this

• A whole lot of other languages were also springing up in the 90’s…

• Ruby, Python, JSP

25

Microservices vs. Monoliths

• Advantages of microservices over monoliths include

• Support for scaling

• Scale vertically rather than horizontally

• Support for change

• Support hot deployment of updates

• Support for reuse

• Use same web service in multiple apps

• Swap out internally developed web service for externally developed web service

• Support for separate team development

• Pick boundaries that match team responsibilities

• Support for failure

26

Support for Scaling

27

Our Cool App

Frontend

Backend Server

Database

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

What's wrong with this picture?

• This is called the
“monolithic” app

• If we need 100 servers…

• Each server will have to run
EACH module

• What if we need more of
some modules than others?

28

Our Cool App

Backend Server

Database

Backend Server Backend Server
Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Mod 1 Mod 2

Mod 3 Mod 4

Mod 5 Mod 6

Frontend

Microservices

29

Our Cool App

Frontend

“Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todos
NodeJS, Firebase

Mailer
Java, MySQL

Accounts
Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook Crawler

Python, Firebase

Goals of Microservices

• Add them independently

• Upgrade the independently

• Reuse them independently

• Develop them independently

• ==> Have ZERO coupling between microservices, aside from their
shared interface

30

Guidelines for Selecting a Notation

31

• Suitable for purpose

• Often visual for compact representation

• Usually boxes and arrows

• UML possible (semi-formal), but possibly constraining

• Note the different abstraction level – Subsystems or processes, not classes or objects

• Formal notations available

• Decompose diagrams hierarchically and in views

• Always include a legend

• Define precisely what the boxes mean

• Define precisely what the lines mean

• Do not try to do too much in one diagram

• Each view of architecture should fit on a page

• Use hierarchy

Software QA: Static & Dynamic Analysis

32

Learning Goals

33

• Gain an understanding of the relative strengths and
weaknesses of static and dynamic analysis

• Examine several popular analysis tools and understand
their use cases

• Understand how analysis tools are used in large open-
source software

Activity: Analyze the Python Program Statically

34

def n2s(n: int, b: int) -> str:
 if n <= 0:
 return '0'
 r = ''
 while n > 0:
 u = n % b
 if u >= 10:
 u = chr(ord('A') + u - 10)
 n = n // b
 r = str(u) + r
 return r

1. What are the set of data types taken
by variable `u` at any point in the
program?

2. Can the variable `u` be a negative
number?

3. Will this function always return a
value?

4. Can there ever be a division by zero?

5. Will the returned value ever contain a
minus sign ‘-’?

Answer: Yes, No, Maybe

What Static Analysis Can & Cannot Do

35

• Type-checking is well established

• Set of data types taken by variables at any point

• Can be used to prevent type errors (e.g. Java) or warn about potential type errors (e.g.
Python)

• Checking for problematic patterns in syntax is easy and fast

• Is there a comparison of two Java strings using `==`?

• Is there an array access `a[i]` without an enclosing bounds check for `i`?

• Reasoning about termination is impossible in general

• Halting problem

• Reasoning about exact values is hard, but conservative analysis via abstraction is possible

• Is the bounds check before `a[i]` guaranteeing that `I` is within bounds?

• Can the divisor ever take on a zero value?

• Could the result of a function call be `42`?

• Will this multi-threaded program give me a deterministic result?

• Be prepared for “MAYBE”

• Verifying some advanced properties is possible but expensive

• CI-based static analysis usually over-approximates conservatively

Bad News: Rice’s Theorem

36

• Every static analysis is necessarily incomplete,
unsound, undecidable, or a combination thereof

• “Any nontrivial property about the language recognized
by a Turing machine is undecidable.”

• Henry Gordon Rice, 1953

Static Analysis is Well-Suited to Detecting Certain Defects

37

• Security: Buffer overruns, improperly validated input...

• Memory safety: Null dereference, uninitialized data...

• Resource leaks: Memory, OS resources...

• API Protocols: Device drivers; real time libraries; GUI frameworks

• Exceptions: Arithmetic/library/user-defined

• Encapsulation:
• Accessing internal data, calling private functions...

• Data races:
• Two threads access the same data without synchronization

Static Analysis Tools: Broad Classification

38

• Linters
• Shallow syntax analysis for enforcing code styles and formatting

• Pattern-based bug detectors
• Simple syntax or API-based rules for identifying common
programming mistakes

• Type-annotation validators
• Check conformance to user-defined types
• Types can be complex (e.g., “Nullable”)

• Data-flow analysis / Abstract interpretation)
• Deep program analysis to find complex error conditions (e.g., ”
can array index be out of bounds?”)

Static Analysis Tools: Applications

39

• Find bugs

• Refactor code

• Keep your code stylish!

• Identify code smells

• Measure quality

• Find usability and accessibility issues

• Identify bottlenecks and improve performance

Activity: Analyze the Python Program Dynamically

40

def n2s(n: int, b: int) -> str:
 if n <= 0:
 return '0'
 r = ''
 while n > 0:
 u = n % b
 if u >= 10:
 u = chr(ord('A') + u - 10)
 n = n // b
 r = str(u) + r
 return r
print(n2s(12,	10))	

1. What are the set of data
types taken by variable `u` at
any point in the program?

2. Did the variable `u` ever
contain a negative number?

3. For how many loop
executions did the while loop
execute?

4. Was there a division by zero?

5. Did the returned value ever
contain a minus sign ‘-’?

Answer: Yes, No, Maybe

Dynamic Analysis Reasons about Program Executions

41

• Tells you properties of the program that were definitely
observed

• Code coverage

• Performance profiling

• Type profiling

• Testing

• In practice, implemented by program instrumentation

• Think “Automated logging”

• Slows down execution speed by a small amount

Static Analysis vs. Dynamic Analysis

42

• Requires only source code

• Conservatively reasons
about all possible

• Reported warnings may
contain false positives

• Can report all warnings of a
particular class of problems

• Advanced techniques like
verification can prove certain
complex properties, but
rarely run in CI due to cost

• Requires successful build + test
inputs

• Observes individual executions

• Reported problems are real, as
observed by a witness input

• Can only report problems that
are seen. Highly dependent on
test inputs. Subject to false
negatives

• Advanced techniques like
symbolic execution can prove
certain complex properties, but
rarely run in CI due to cost

Static Analysis

43

Tools for Static Analysis

44

Static Analysis is a Key Part of CI

45

Static Analysis used to be Purely Academic…

46

Static Analysis is Also Integrated into IDEs

47

What Makes a Good Static Analysis Tool?

48

• Static analysis should be fast

• Don’t hold up development velocity

• This becomes more important as code scales

• Static analysis should report few false positives

• Otherwise developers will start to ignore warnings and alerts, and quality will decline

• Static analysis should be continuous

• Should be part of your continuous integration pipeline

• Diff-based analysis is even better -- don’t analyse the entire codebase; just the
changes

• Static analysis should be informative

• Messages that help the developer to quickly locate and address the issue

• Ideally, it should suggest or automatically apply fixes

(1) Linters

49

• Cheap, fast, and lightweight static source analysis

Use Linters to Enforce Style Guidelines

50

• Don’t rely on manual inspection during code review!

Linters Use Very “Shallow” Static Analysis

51

• Ensure proper indentation

• Naming convention

• Line sizes

• Class nesting

• Documenting public functions

• Parenthesis around expressions

• What else?

Use Linters to Improve Maintainability

52

• Why? We spend more time reading code than writing it.

• Various estimates of the exact %, some as high as
80%

• Code is ownership is usually shared

• The original owner of some code may move on

• Code conventions make it easier for other developers to
quickly understand your code

UseStyle Guidelines to Facilitate Communication

53

• Guidelines are inherently opinionated, but consistency is
the important point. Agree to a set of conventions and
stick to them.

Take Home Message: Style is an Easy Way to
Improve Readability!

54

• Everyone has their own opinion (e.g., tabs vs. spaces)

• Agree to a convention and stick to it

• Use continuous integration to enforce it

• Use automated tools to fix issues in existing code

(2) - Pattern-based Static Analysis Tools

55

• Bad Practice

• Correctness

• Performance

• Internationalization

• Malicious Code

• Multithreaded Correctness

• Security

• Dodgy Code

SpotBugs can be Extended with Plugins

56

Challenges

57

• The analysis must produce zero false positives
• Otherwise developers won’t be able to build the code!

• The analysis needs to be really fast
• Ideally < 100 ms
• If it takes longer, developers will become irritated and
lose productivity

• You can’t just “turn on” a particular check
• Every instance where that check fails will prevent
existing code from
• There could be thousands of violations for a single
check across large codebases

(3) -Use Type Annotations to Detect Common Errors

58

• Uses a conservative analysis to prove the absence of certain
defects

• Null pointer errors, uninitialized fields, certain liveness
issues, information leaks, SQL injections, bad regular
expressions, incorrect physical units, bad format strings, ...

• C.f. SpotBugs which makes no safety guarantees

• Assuming that code is annotated and those annotations
are correct

• Uses annotations to enhance type system

• Example: Java Checker Framework or MyPy

(3) -Use Type Annotations to Detect Common Errors

59

• Uses a conservative analysis to prove the absence of certain
defects

• Null pointer errors, uninitialized fields, certain liveness
issues, information leaks, SQL injections, bad regular
expressions, incorrect physical units, bad format strings, ...

• C.f. SpotBugs which makes no safety guarantees

• Assuming that code is annotated and those annotations
are correct

• Uses annotations to enhance type system

• Example: Java Checker Framework or MyPy

Taint Analysis

60

• Tracks flow of sensitive information through the program

• Tainted inputs come from arbitrary, possibly malicious
sources
• User inputs, unvalidated data

• Using tainted inputs may have dangerous
consequences
• Program crash, data corruption, leak private data, etc.

• We need to check that inputs are sanitized before
reaching sensitive locations

Classic Example: SQL Injection

61

Classic Example: SQL Injection

62

void	processRequest()	{	
String	input	=	getUserInput();	
String	query	=	"SELECT	...	"	+	input;	
executeQuery(query);	

}	

Classic Example: SQL Injection

63

void	processRequest()	{	
String	input	=	getUserInput();	
String	query	=	"SELECT	...	"	+	input;	
executeQuery(query);	

}	

Tainted input arrives from untrusted source

Tainted output flows to a sensitive sink

Classic Example: SQL Injection

64

void	processRequest()	{	
String	input	=	getUserInput();		

input	=	saniIzeInput(input);

String	query	=	"SELECT	...	"	+	input;	
executeQuery(query);	

}	

Taint is removed by sanitizing data

We can now safely execute query on untainted data

Unit Catastrophe

65

Units Checker Identifies Physical Unit Inconsistencies

66

• Guarantees that operations are performed on the same
kinds and units

• Kinds of annotations
• @Acceleration, @Angle, @Area, @Current, @Length,
@Luminance, @Mass, @Speed, @Substance,
@Temperature, @Time

• SI unit annotation
• @m, @km, @mm, @kg, @mPERs, @mPERs2,
@radians, @degrees, @A, ...

Checker Frameworks: Limitations

67

• Can only analyze code that is annotated
• Requires that dependent libraries are also annotated
• Can be tricky, but not impossible, to retrofit annotations
into existing codebases

• Only considers the signature and annotations of methods
• Doesn’t look at the implementation of methods that are
being called

• Dynamically generated code
• Spring Framework

• • Can produce false positives!
• Byproduct of necessary approximations

Infer : What if we didn’t want Annotations

68

• Focused on memory safety bugs
• Null pointer dereferences, memory leaks, resource
leaks, ...

• Compositional interprocedural reasoning
• Based on separation logic and bi-abduction

• Scalable and fast
• Can run incremental analysis on changed code

• Does not require annotations

• Supports multiple languages
• Java, C, C++, Objective-C
• Programs are compiled to an intermediate
representation

Infer : What if we didn’t want Annotations

69

Infer : What if we didn’t want Annotations

70

Beware of Inevitable False Positives

71

The Best QA Strategies use Multiple Tools

72

Summary

73

• Linters are cheap, fast, but imprecise analysis tools
• Can be used for purposes other than bug detection (e.g.,
style)

• Conservative analyzers can demonstrate the absence of
particular defects
• At the cost of false positives due to necessary
approximations
• Inevitable trade-off between false positives and false
negatives

• The best QA strategy involves multiple analysis and testing
techniques
• The exact set of tools and techniques depends on context

