
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Spring 2024

Week 4- Class 1:
Introduction to

Software Architecture

Administrivia

2

• Assignment 2 Due Today

• Assignment 3 & SDE Project Part 1

• Will be posted this evening

• Both will be due Tuesday February 6th

• Plan ahead!

Software Testing

3

Continuous Integration & Deployment

4

How Good Are Our Tests?

5

Code Coverage

6

• Line coverage
• Statement coverage
• Branch coverage
• Instruction coverage
• Basic-block coverage
• Edge coverage
• Path coverage
•...

Code Coverage

7

We Can Measure Coverage on Almost Anything

8

Be Aware of Coverage Chasing

9

• Recall: issues with metrics and incentives
• Also: Numbers can be deceptive

• 100% coverage != exhaustively tested
• “Coverage is not strongly correlated with suite
effectiveness”

• Based on empirical study on GitHub projects
[Inozemtseva and Holmes, ICSE’14]

• Still, it’s a good low bar
• Code that is not executed has definitely not been tested

Coverage of What?

10

• Distinguish code being tested and code being executed

• Library code >>>> Application code

• Can selectively measure coverage

• All application code >>> code being tested

• Not always easy to do this within an application

Coverage != Outcome

11

• What’s better, tests that always pass or tests that always fail?

• Tests should ideally be falsifiable. Boundary determines

• specification

• Ideally:
• Correct implementations should pass all tests
• Buggy code should fail at least one test
• Intuition behind mutation testing (we’ll revisit this next week)

• What if tests have bugs?
• Pass on buggy code or fail on correct code

• Even worse: flaky tests
• Pass or fail on the same test case nondeterministically

• What’s the worst type of test?

Test Design Principles

12

• Use public APIs only

• Clearly distinguish inputs, configuration, execution, and
oracle

• Be simple; avoid complex control flow such as
conditionals and loops

• Tests shouldn’t need to be frequently changed or
refactored
• Definitely not as frequently as the code being tested
changes

Anti-Patterns

13

• Snoopy oracles
• Relying on implementation state instead of observable behavior
• E.g. Checking variables or fields instead of return values

• Brittle tests
• Overfitting to special-case behavior instead of general principle
• E.g. hard-coding message strings instead of behavior

• Slow tests
• Self-explanatory(beware of heavy environments, I/O, and sleep())

• Flaky tests
• Tests that pass or fail nondeterministically
• Often because of reliance on random inputs, timing (e.g. sleep(1000)),
availability of external services (e.g. fetching data over the network in a unit
test), or dependency on order of test execution (e.g. previous test sets up
global variables in certain way)

Takeaways

14

• Most tests that you will write will be muuuuuuch more complex than
testing a sort function.

• Need to set up environment, create objects whose methods to test,
create objects for test data, get all these into an interesting state, test
multiple APIs with varying arguments, etc.

• Many tests will require mocks (i.e., faking a resource-intensive
component).

• General principles of many of these strategies still apply:
• Writing tests can be time consuming
• Determining test adequacy can be hard (if not impossible)
• Test oracles are not easy
• Advanced test strategies have trade-offs (high costs with high returns)

Intro to Software Architecture

15

Learning Goals

16

• Understand the abstraction level of architectural reasoning

• Appreciate how software systems can be viewed at different
abstraction levels

• Distinguish software architecture from (object-oriented)
software design

• Use notation and views to describe the architecture suitable to
the purpose

• Document architectures clearly, without ambiguity

Views and Abstraction

17

Views & Abstraction

18

Views & Abstraction

19

Views & Abstraction

20

Abstracted Views Focus on Conveying Information

21

• They have a well-defined purpose

• Show only necessary information

• Abstract away unnecessary details

• Use legends/annotations to remove ambiguity

• Multiple views of the same object tell a larger story

Software Architecture Case Study: Autonomous Vehicles

22

Case Study: Apollo

23

• Check out the “side pass” feature from the video:

• http://tinyurl.com/cen24-vid

• Source: https://github.com/ApolloAuto/apollo

• Doxygen: https://hidetoshi-furukawa.github.io/apollo/
doxygen/index.html

http://tinyurl.com/cen24-vid
https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html

Apollo Software Architecture

24

Apollo Hardware Architecture

25

Apollo Hardware/Vehicle Overview

26

Apollo Perception Module

27

Apollo ML Models

28

Apollo Software Stack

29

Feature Evolution (Software Stack View)

30

Software Architecture

31

The software architecture of a program or computing system is the structure or structures of
the system, which comprise software elements, the externally visible properties of those

elements, and the relationships among them.
[Bass et al. 2003]

Note: this definition is

ambivalent to whether the

architecture is known,

or whether it’s any good!

Software Design vs. Architecture

32

Levels of Abstraction

33

• Requirements

• high-level “what” needs to be done

• Architecture (High-level design)

• high-level “how”, mid-level “what”

• OO-Design (Low-level design, e.g. design patterns)

• mid-level “how”, low-level “what”

• Code

• low-level “how”

Design vs. Architecture

34

• Design Questions

• How do I add a menu item in
VSCode?

• How can I make it easy to add
menu items in VSCode?

• What lock protects this data?

• How does Google rank pages?

• What encoder should I use for
secure communication?

• What is the interface between
objects?

• Architectural Questions

• How do I extend VSCode with a
plugin?

• What threads exist and how do they
coordinate?

• How does Google scale to billions of
hits per day?

• Where should I put my firewalls?

• What is the interface between
subsystems?

Objects

35

Design Patterns

36

Design Patterns

37

Design Patterns

38

Architecture

39

Architecture

40

Architecture

41

Why Document Architecture?

42

• Blueprint for the system
• Artifact for early analysis
• Primary carrier of quality attributes
• Key to post-deployment maintenance and enhancement

• Documentation speaks for the architect, today and 20
years from today

• As long as the system is built, maintained, and evolved
according to its documented architecture

• Support traceability.

Views & Purposes

43

• Every view should align with a purpose

• • Views should only represent information relevant to that purpose

• Abstract away other details

• Annotate view to guide understanding where needed

• • Different views are suitable for different reasoning aspects (different quality
goals), e.g.,

• Performance

• Extensibility

• Security

• Scalability

• ...

Common Views in Documenting Software Architecture

44

• Static View

• Modules (subsystems, structures) and their relations
(dependencies, ...)

• Dynamic View

• Components (processes, runnable entities) and
connectors (messages, data flow, ...)

• Physical View (Deployment)

• Hardware structures and their connections

Common Software Architectures

45

1. Pipes & Filters

46

Pipes & Filters Example: Compilers

47

2. Object Oriented Organization

48

3. Event-Driven Architecture

49

Example: HTML DOM + Javascript

50

4. Blackboard Architecture

51

5. Layered Systems

52

Example Internet Protocol Suite

53

Guidelines for Selecting a Notation

54

• Suitable for purpose

• Often visual for compact representation

• Usually boxes and arrows

• UML possible (semi-formal), but possibly constraining

• Note the different abstraction level – Subsystems or processes, not classes or objects

• Formal notations available

• Decompose diagrams hierarchically and in views

• Always include a legend

• Define precisely what the boxes mean

• Define precisely what the lines mean

• Do not try to do too much in one diagram

• Each view of architecture should fit on a page

• Use hierarchy

