
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Spring 2024

Week 2 - Class 2:
Project Planning &
Agile Development

Administrivia

2

• Office Hours Decided

• Tuesday/Thursday 12:00pm-1:00pm (before class)
Hybrid

• Or by appointment

• Let me know if you are not on Ed Discussions

• Team-forming this week - Due Tues, January 23rd

• Teams of 3 students

• See Ed Discussions Post

• Assignment 2 out this afternoon

Software Measurement & Metrics

3

What could Possibly go Wrong?

4

• Bad statistics: A basic
misunderstanding of
measurement theory and what is
being measured.

• Bad decisions: The incorrect use
of measurement data, leading to
unintended side effects.

• Bad incentives: Disregard for the
human factors, or how the
cultural change of taking
measurements will affect people.

Making Inferences

5

• To infer causation:

• Provide a theory (from domain knowledge, independent of data)

• Show correlation

• Demonstrate ability to predict new cases (replicate/validate)

Spurious Correlations

6

Confounding Variables

7

• If you look only at the coffee consumption → cancer
relationship, you can get very misleading results

• Smoking is a confounder

SWE Research

8

Measurements Validity

9

• Construct validity – Are we measuring what we intended to
measure?

• Internal validity – The extent to which the measurement can
be used to explain some other characteristic of the entity
being measured

• External validity – Concerns the generalization of the findings
to contexts and environments, other than the one studied

Measurements Reliability

10

• Extent to which a measurement yields similar results when applied
multiple times

• Goal is to reduce uncertainty, increase consistency

• Example: Performance
• Time, memory usage
• Cache misses, I/O operations, instruction execution count, etc.

• Law of large numbers
• Taking multiple measurements to reduce error

• Trade-off with cost

McNamara Fallacy

11

McNamara Fallacy

12

• Measure whatever can be easily measured.

• Disregard that which cannot be measured easily.

• Presume that which cannot be measured easily is not
important.

• Presume that which cannot be measured easily does
not exist.

McNamara Fallacy

13

• There seems to be a general misunderstanding to the effect
that a mathematical model cannot be undertaken until
every constant and functional relationship is known to high
accuracy. This often leads to the omission of admittedly
highly significant factors (most of the “intangibles”
influences on decisions) because these are unmeasured or
unmeasurable. To omit such variables is equivalent to
saying that they have zero effect... Probably the only value
known to be wrong...

• J. W. Forrester, Industrial Dynamics, The MIT Press, 1961

Metrics & Incentives

14

• Goodhart’s law: “When a measure becomes a target, it
ceases to be a good measure.”

Simplistic Productivity Measures

15

• Lines of code per day?
• Industry average 10-50 lines/day
• Debugging + rework ca. 50% of time

• • Function/object/application points per month • Bugs
fixed?
• Milestones reached?

Incentivizing Productivity

16

• What happens when developer bonuses are based on

• Lines of code per day?

• Amount of documentation written?

• Low number of reported bugs in their code?

• Low number of open bugs in their code?

• High number of fixed bugs?

• Accuracy of time estimates?

Developer Productivity Myths

17

• Productivity is all about developer activity

• Productivity is only about individual performance

• One productivity metric can tell us everything

• Productivity measures are useful only for managers

• Productivity is only about engineering systems and
developer tools

WARNING!!

18

• Most software metrics are controversial
• Usually only plausibility arguments, rarely rigorously validated
• Cyclomatic complexity was repeatedly refuted, yet is still used
• “Similar to the attempt of measuring the intelligence of a person in terms of
the weight or circumference of the brain”

• Use carefully!

• Code size dominates many metrics

• Avoid claims about human factors (e.g., readability) and quality, unless
validated

• Calibrate metrics in project history and other projects

• Metrics can be gamed; you get what you measure

Summary

19

• Measurement is difficult but important for decision making

• Software metrics are easy to measure but hard to
interpret,
validity often not established

• Many metrics exist, often composed; pick or design
suitable metrics if needed

• Careful in use: monitoring vs incentives

• Strategies beyond metrics

Questions to Consider for Your Projects

20

• What properties do we care about and how do we
measure them?

• What is being measured? Does it (to what degree)
capture the thing you care about? What are its
limitations?

• How should it be incorporated into process?

• What are potentially negative side effects or incentives?

Project Planning & Agile Development

21

Learning Goals

22

• Recognize the importance of project planning

• Understand the difficulty of measuring progress

• Identify why software development has project
characteristics

• Use milestones for planning and progress measurement

• Understand backlogs and user stories

• Get to know your team!

Software Process

23

• “The set of activities and associated results that produce
a software product.”

All Software Development Processes

24

Effort Spent During the Process

25

Effort Spent During the Process

26

Let’s Improve the Reliability of this Process

27

• Write down all requirements

• Review requirements

• Require approval for all changes to requirements

• Use version control for all changes

• Review code

• Track all work items

• Break down feature development into small tasks

• Write down and monitor all reported bugs

• Hold regular, frequent status meetings

• Plan and conduct quality assurance

• Employ a DevOps framework to push code between developers and operations

Effort Spent During the Process

28

Effort Spent During the Process

29

Example Process Issues

30

• Change Control: Mid-project informal agreement to changes suggested by
customer. Project scope expands 25-50%

• Quality Assurance: Late detection of requirements and design issues. Test-
debug-reimplement cycle limits development of new features. Release with
known defects.

• Defect Tracking: Bug reports collected informally. Bugs are overlooked.

• System Integration: Integration of independently developed components at
the very end of the project. Interfaces out of sync.

• Source Code Control: Accidentally overwrote changes. Lost work.

• Scheduling: Late project. Developers asked to re-estimate work effort
weekly.

Effort Spent During the Process

31

Defect Correction Effort

32

Planning

33

Time Estimation

34

Activity: Estimate Time

35

• Task A: Web version of the Monopoly board game with
Orlando street names
• Team: justyou

• Task B: Bank smartphone app
• Team: you with team of 4 developers, one
experienced with iPhone apps, one with background in
security

• Estimate: 8h days, 20 workdays in a month, 220
workdays per year

Revise Time Estimate

36

• Do you have comparable experience to base an
estimate on?

• How much design do you need for each task?

• How much testing time do you need for each task?

• Let’s break down the task into ~5 smaller tasks and
estimate
their lengths.

• Revise our overall estimate, if necessary

Wisdom of the Crowd

37

Measuring Progress

38

• “I’m almost done with the app. The frontend is almost
fully implemented. The backend is fully finished except
for the one stupid bug that keeps crashing the server. I
only need to find the one stupid bug, but that can
probably be done in an afternoon. We should be ready
to release next week.”

Measuring Progress

39

• Developer judgment: x% done

• Lines of code?

• Functionality?

• Quality?

Milestones and Deliverables Make Progress
Observable

40

• Milestone: clear end point of a (sub)tasks

• For project manager

• Reports, prototypes, completed subprojects

• “80% done“ is not a suitable mile stone

• Deliverable: Result for customer

• Similar to a milestone, but for customers

• Reports, prototypes, completed subsystems

Processes

41

Waterfall was the OG Software Process

42

Akin to Processes Pioneered in Auto
Manufacturing by Ford

43

LEAN Production Adapts to Variable Demand

44

• Toyota Production System (TPS)

• Build only what is needed, only when it is needed.

• Use the “pull” system to avoid overproduction (Kanban)

• Stop to fix problems, to get quality right from the start
(Jidoka)

• Workers are multi-skilled and understand the whole
process; take
ownership

• Lots of recent software buzzwords build on these ideas

• Just-in-time, DevOps, Shift-Left

Now, Most Teams use some form of Agile Methods

45

Now, Most Teams use some form of Agile Methods

46

Core Concepts in Agile

47

Scrum

48

Elements of Scrum

49

Backlogs

50

• The product backlog is all the features for the
product

• The sprint backlog is all the features that will be
worked on for that sprint. These should be
broken down into discrete tasks:
• Fine-grained
• Estimated
• Assigned to individual team members
• Acceptance criteria should be defined

• User Stories are often used

Kanban Boards

51

Scrum Meetings

52

• Sprint Planning Meeting
• Entire Team decides together what to tackle for that
sprint

• • Daily Scrum Meeting
• Quick Meeting to touch base on :
• What have I done? What am I doing next? What am I
stuck on/need help?

• Sprint Retrospective
• Review sprint process

• Sprint Review Meeting
• Review Product

User Stories

53

User Stories

54

Card

55

• “As a [role], I want [function], so that [value]”

Card

56

• What must a developer do to implement this user story?

Confirmation

57

• How can we tell that the user story has been achieved

• It’s easy to tell when the developer finished the code.

• But, how do you tell that the customer is happy?

How to Evaluate a User Story

58

Independent

59

• Schedule in any order.

• Not overlapping in concept.

• Not always possible.

Negotiable

60

• Details to be negotiated during
development.

• A good story captures the essence,
not the details.

Valuable

61

• This story needs to have value to
someone (hopefully the customer).

• Especially relevant to splitting up
issues.

Estimable

62

• Helps keep the size small.

• Ensure we negotiated correctly.

• “Plans are nothing, planning is
everything” - Dwight D. Eisenhower

Small

63

• Can be written on a 3x5 card.

• At most two person-weeks of work.

• Too big === unable to estimate

Testable

64

• Ensures understanding of task

• We know when we can mark task
“Done”

• Unable to test === I do not
understand it

