
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Fall 2025

Week 8 - Class I:
Software Security

+
Midterm Exam Review

Administrivia

2

• Assignment 4

• Due Monday, October 13th

• Exploring Static Analysis Tools and CI with a simple Python app

• Accept the Assignment on GitHub Classroom

• SDE Project Part 2

• Due Tuesday, October 15th (updated deadline!)

• You should have already received feedback on your plan!

• Two parts:

• Process & Implementation Snapshot

• Checkpoint Presentation

• 2 Parts, In-class exam, closed book, 200 points total

• Part 1: Multiple Choice

• 12-15 questions

• Will test basic knowledge of concepts, select the best answer for
each question

• Part 2: Short Answer Questions

• 4-5 questions

• Concepts from class, SE scenarios, answer in a paragraph

• Covers material from Weeks 1-7

• You will have the entire class period to complete the exam

• Please bring your UCF ID to the exam
3

Midterm Exam Format

Example Multiple Choice Questions

4

• Which of the following is NOT a tenant of Agile?

• (a) Incremental Design/Development

• (b) Inspect and Adapt Cycles

• (c) Ignoring the Customer

• (d) Collaborative workflows

• What is the name of the concept where someone looks for something
where they think it will be?

• (a) the spotlight effect

• (b) the streetlight effect

• (c) The candle effect

• (d) the software effect

Example Short Answer Questions

5

• Consider the following scenario: You are working on a
development team that seems to have a lot of issues
with reoccurring bugs in your codebase. Describe
some concepts from class that might aid in this
situation. Be sure to use at least two separate
concepts.

Security & Privacy

6

Security Requirements for Web Apps

7

1. Authentication

•Verify the identify of the parties involved

•Who is it?

2. Authorization

• Grant access to resources only to allowed users

• Are you allowed?

3. Confidentiality

• Ensure that information is given only to authenticated parties

• Can you see it?

4. Integrity

• Ensure that information is not changed or tampered with

• Can you change it?

Security Requirements for Web Apps

8

• What is being defended?

• What resources are important to defend?

• What malicious actors exist and what attacks might they employ?

• Who do we trust?

• What entities or parts of system can be considered secure and trusted

• Have to trust something!

Web Threat Models: Big Picture

9

client page
(the “user”) server

HTTP Request

HTTP Response

Do I trust that this request really
came from the user?

HTTP Request

HTTP Response

malicious actor
“black hat”

Do I trust that this response
really came from the server?

Security Requirements for Web Apps

10

1. Authentication

•Verify the identify of the parties involved

•Threat: Impersonation. A person pretends to be someone they are not.

2. Authorization

3. Confidentiality

• Ensure that information is given only to authenticated parties

• Threat: Eavesdropping. Information leaks to someone that should not have it.

4. Integrity

• Ensure that information is not changed or tampered with

• Threat: Tampering.

Man in the Middle

11

• Requests to server intercepted by man in the middle

• Requests forwarded

• But… response containing code edited, inserting malicious code

• Or could

• Intercept and steal sensitive user data

HTTPS: HTTP over SSL

12

• Establishes secure connection from client to server

• Uses SSL to encrypt traffic

• Ensures that others can’t impersonate server by establishing certificate
authorities that vouch for server.

• Server trusts an HTTPS connection iff

• The user trusts that the browser software correctly implements HTTPS with
correctly pre-installed certificate authorities.

• The user trusts the certificate authority to vouch only for legitimate websites.

• The website provides a valid certificate, which means it was signed by a
trusted authority.

• The certificate correctly identifies the website (e.g., certificate received for
“https://example.com" is for "example.com" and not other entity).

Using HTTPS

13

• If using HTTPS, important that all scripts are loaded through HTTPS

• If mixed script from untrusted source served through HTTP, attacker
could still modify this script, defeating benefits of HTTPS

• Example attack:

• Banking website loads Bootstrap through HTTP rather than HTTPS

• Attacker intercepts request for Bootstrap script, replaces with
malicious script that steals user data or executes malicious action

Authentication

14

• How can we know the identify of the parties involved

• Want to customize experience based on identity

• But need to determine identity first!

• Options

• Ask user to create a new username and password

• Lots of work to manage (password resets, storing passwords securely, …)

• Hard to get right (#2 on the OWASP Top 10 Vulnerability List)

• User does not really want another password…

• Use an authentication provider to authenticate user

• Google, FB, Twitter, Github, …

Authentication Provider

15

• Creates and tracks the identity of the user

• Instead of signing in directly to website, user signs in to
authentication provider

• Authentication provider issues token that uniquely proves identity of
user

Sign On Gateway

16

• Can place some magic “sign-on gateway” before out app - whether
it’s got multiple services or just one

Sign-on
gateway

Our Cool App

Frontend “Dumb”
Backend

Mod 1

REST
service

Database

Mod 2

REST
service

Database

Mod 3

REST
service

Database

Mod 4

REST
service

Database

Mod 5

REST
service

Database

Mod 6

REST
service

Database

AJAX

Todo
NodeJS, Firebase

Mailer

Java, MySQL

Accounts

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Facebook

Python, Firebase

Unauthenticated
request Authenticated

request

Authentication with Multiple Service Providers

17

• Let’s consider updating a Todos app so that it can automatically put
calendar events on a Google Calendar

REST
service

Database

Todos

Prof Hacker

Logs into,

posts new todo

Google
Calendar

API

Connects as user,

creates new event

How does Todos tell Google that it’s posting something for Prof Hacker?

Should Prof Hacker tell the Todos app her Google password?

We’ve Got Something for that

18

OAuth

19

• OAuth is a standard protocol for sharing information about users
from a “service provider” to a “consumer app” without them
disclosing their password to the consumer app

• 3 key actors:

• User, consumer app, service provider app

• E.x. “Prof Hacker,” “Todos App,” “Google Calendar”

• Service provider issues a token on the user’s behalf that the
consumer can use

• Consumer holds onto this token on behalf of the user

• Protocol could be considered a conversation…

Top 3 Web Vulnerabilities

• OWASP collected data on vulnerabilities

• Surveyed 7 firms specializing in web app security

• Collected 500,000 vulnerabilities across hundreds of apps and
thousands of firms

• Prioritized by prevalence as well as exploitability, detectability, impact

20

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

• User input that contains a client-side script that does not belong

• A todo item:

/><script>alert("LASAGNA FOR PRESIDENT”);</script>

• Works when user input is used to render DOM elements without being
escaped properly

• User input saved to server may be served to other users

• Enables malicious user to execute code on other’s users browser

• e.g., click ‘Buy’ button to buy a stock, send password data to third party, …

21

#3 - XSS: Cross Site Scripting

• Building authentication is hard

• Logout, password management, timeouts, secrete questions, account updates, …

• Vulnerability may exist if

• User authentication credentials aren’t protected when stored using hashing or encryption.

• Credentials can be guessed or overwritten through weak account management functions
(e.g., account creation, change password, recover password, weak session IDs).

• Session IDs are exposed in the URL (e.g., URL rewriting).

• Session IDs don’t timeout, or user sessions or authentication tokens, particularly single
sign-on (SSO) tokens, aren’t properly invalidated during logout.

• Session IDs aren’t rotated after successful login.

• Passwords, session IDs, and other credentials are sent over unencrypted connections.

22

#2 - Broken Authentication and Session Management

• User input that contains server-side code that does not belong

• Usually comes up in context of SQL (which we aren’t using)

• e.g.,

• String query = "SELECT * FROM accounts WHERE
custID='" + request.getParameter("id") + "'";

• Might come up in JS in context of eval

• eval(request.getParameter(“code”));

• Obvious injection attack - don’t do this!

23

#1 - Injection

