CEN 501 é:

Soft
:nOi n\évea:ii Week 6 - Class I:
1S . A Software Engineer’s
-1 0005 Guide to LLMs

University of
Central Florida

&

Dr. Kevin Moran




Administrivia (&

e Assignment 3
e Due Today
e Deploying and modifying a simple web app
e Sign up for GitHub Classroom right now!!!!
e SDE Project Part 1
e Due today!
e [WO parts:
e Team Contract
e |nitial Project Backlog
¢ [ ecture Recordings

o \\ill be posted today!




Software QA Static & Dynamic Analysis &




Dynamic Analysis &




Android Memory Profiler

« MEMORY +~ Recorded Java / Kotlin Allocations: 07.686

MainActivity - stopped - saved - destroyed

MEMORY

S

. lMainActivity

Total: 9

00.000

Table Visualization

Allocation Size v

0 KB 16 KB

<Thread main>

main() (Lcom/android/internal/os/Zygotelnit;)

invoke() (Ljava/lang/reflect/Method;)
main() (Landroid/app/ActivityThread;)

loop() (Landroid/os/Looper;)
dispatchMessage() (Landroid/os/Handler;)

handleMessage() (Landroid/app/ActivityThread$H;)
execute() (Landroid/app/servertransaction/TransactionExecutor;)
executeCallbacks() (Landroid/app/servertransaction/TransactionExecutor;)

execute() (Landroid/app/servertransaction/ActivityRelaunchltem;)

15.000

32 KB

Match Case

48 KB

Regex A S
64 KB

getTransition() (Lcom/andr...
inflateTransition() (Landroi...

handleRelaunchActivity() (Landroid/app/ActivityThread;)
handleRelaunchActivitylnner() (Landroid/app/ActivityThread;)
handleLaunchActivity() (Landroid/app/ActivityThread;)
performLaunchActivity() (Landroid/app/ActivityThread;)
callActivityOnCreate() (Landroid/app/Instrumentation;)

onCreate() (Lcom/example/myapplication/MainActivity;)
setContentView() (Landroidx/appcompat/app/AppCompatActivity;)
setContentView() (Landroidx/appcompat/app/AppCompatDelegatelmpl;)
ensureSubDecor() (Landroidx/appcompat/app/AppCompatDelegatelmpl;)
createSubDecor() (Landroidx/appcompat/app/AppCompatDelegatelmpl;)
getDecorView() (Lcom/android/internal/policy/PhoneWindow;)

generatelLayout() (Lcom/a... generateDec...
onResourcesLoaded() (L...  <init... [
inflate() (Landroid/view/... [ I... |||
inflate() (Landroid/view]/... |
inflate() (Landroid/view/... JI | =0
createViewFromTa... ... o N

inflate() (Landroid/view/Layoutinflater;)
inflate() (Landroid/view/Layoutinflater;)
inflate() (Landroid/view/Layoutinflater;)

rinflate() (Landroid/view/Layoutinflate...

rinflate() (Landroid/view/Layo...
createViewFromTag() (Landr...

obtai...
obtai...
obtai...
obtai...
resize...

int[]

‘onCreate() (Landroid... -
onCreate()... [onCreatsy [N

createBa
createAc|

updateR;

https://developer.android.com/studio/profile/memory-profiler



Pycharm Debugger

@ & & BB ~+honProject v Version control v
Adding breakpoints

) e car.py

def accelerate(

.speed += 5

def brake( )
.speed -= 5

def step( E
.odometer +=
.time += 1

def average_speed( )<

return .odometer /
if _name__ =="'__main__' while True

Vv @

Run & car

G
Accelerating...
What should I do? [Alccelerate, [B]rake, [0]dometer, or show average [S]peed?b
Braking...
What should I do? [Alccelerate, [B]rake, [0]dometer, or show average [S]peed?b
Braking...

«©

M @

What should I do? [Alccelerate, [B]lrake, [0]dometer, or show average [S]peed?o
The car has driven 0 kilometers

© ©

What should I do? [Alccelerate, [B]lrake, [0]dometer, or show average [S]peed?

O pythonProject > @@ car.py 271 LF UTF-8 4 spaces Python 3.9 (pythonProject)

https://www.jetbrains.com/help/pycharm/debugging-your-first-python-application.html#where-is-the-problem




Valgring

Dynamic Analysis Library

&

Current release: valgrind-3.23.0

_JTA
'

Valgrind is an instrumentation framework for building dynamic analysis tools. There are Valgrind tools that can
automatically detect many memory management and threading bugs, and profile your programs in detail. You can
also use Valgrind to build new tools.

The Valgrind distribution currently includes seven production-quality tools: a memory error detector, two thread error
detectors, a cache and branch-prediction profiler, a call-graph generating cache and branch-prediction profiler, and
two different heap profilers. It also includes an experimental SimPoint basic block vector generator. It runs on the
following platforms: X86/Linux, AMD64/Linux, ARM/Linux, ARM64/Linux, PPC32/Linux, PPC64/Linux,
PPC64LE/Linux, S390X/Linux, MIPS32/Linux, MIPS64/Linux, X86/Solaris, AMD64/Solaris, ARM/Android (2.3.x and
later), ARM64/Android, X86/Android (4.0 and later), MIPS32/Android, X86/FreeBSD, AMD64/FreeBSD,
ARM64/FreeBSD, X86/Darwin and AMD64/Darwin (Mac OS X 10.12).

Valgrind is Open Source / Free Software, and is freely available under the GNU General Public License, version 2.

https://valgrind.org/



Summary (¢

® | inters are cheap, fast, but imprecise analysis tools
e Can be used for purposes other than bug detection (e.g.,
style)

® Conservative analyzers can demonstrate the absence of
particular defects
e At the cost of false positives due to necessary
approximations
¢ |nevitable trade-off between false positives and false
negatives

® The best QA strategy involves multiple analysis and testing
techniques
e [he exact set of tools and techniques depends on context




A Software Engineers Guide to LLMs &




Learning Goals

&

e \Vhat is an LLM?

® [s an LLM the right solution for your problem??

® Building a basic LLLM integration

e Fvaluation Strategies
® [echnigues to Improve performance

® Productionizing an LLM application

10




Today's Running Example: Unit Test Generation

&

Input: Python function

Fibonacci number generator

When given a position, the function returns the fibonacci at that
position in the sequence.

The zeroth number in the fibonacci sequence is @. The first number
TS

Negative numbers should return None

def fibonacci(position):
if(position < 0):
return None
elif(position <= 1):
return position
else:
return fibonacci(position - 1) + fibonacci(position - 2)

Output: Unit Tests!

test_zeroth_fibonacci():

assert(fibonacci(0) == 0)

test first fibonacci():
assert(fibonacci(1l) ==

test 21st fibonacci():
assert(fibonacci(21) == 10946)

test_negative_fibonacci():

assert(fibonacci(-1) == None)

11




Today's Running Example: Unit Test Generation

Fibonacci num
When given a
position in t
The zeroth nui
iyl
Negative numb:
def fibonacci
if(position
return No

elif (positi

return po
else:
return fi

2002.05800v2 [cs.SE] 19 Feb 2020

1V

e

On Learning Meaningful Assert Statements for Unit Test Cases

Cody Watson
Washington and Lee University
Lexington, Virginia
cwatson@wlu.edu

Gabriele Bavota
UniversitA3 della Svizzera italiana
(USI)

Lugano, Switzerland
gabriele.bavota@usi.ch

Abstract

Software testing is an essential part of the software lifecycle and
requires a substantial amount of time and effort. It has been esti-
mated that software developers spend close to 50% of their time on
testing the code they write. For these reasons, a long standing goal
within the research community is to (partially) automate software
testing. While several techniques and tools have been proposed
to automatically generate test methods, recent work has criticized
the quality and usefulness of the assert statements they generate.
Therefore, we employ a Neural Machine Translation (NMT) based
approach called AtLAs (AuTomatic Learning of Assert Statements)
to automatically generate meaningful assert statements for test
methods. Given a test method and a focal method (i.e., the main
method under test), ATLAS can predict a meaningful assert state-
ment to assess the correctness of the focal method. We applied
ATtLAS to thousands of test methods from GitHub projects and it
was able to predict the exact assert statement manually written
by developers in 31% of the cases when only considering the top-
1 predicted assert. When considering the top-5 predicted assert
statements, ATLAs is able to predict exact matches in 50% of the
cases. These promising results hint to the potential usefulness of
our approach as (i) a complement to automatic test case generation
techniques, and (ii) a code completion support for developers, who
can benefit from the recommended assert statements while writing
test code.

CCS Concepts

Michele Tufano

Microsoft
Redmond, Washington
michele.tufano@microsoft.com

Kevin Moran
William & Mary
Williamsburg, Virginia
kpmoran@cs.wm.edu

Denys Poshyvanyk
William & Mary
Williamsburg, Virginia
denys@cs.wm.edu

'20), May 23-29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3377811.3380429

1 Introduction

Writing high-quality software tests is a difficult and time-consuming
task. To help tame the complexity of testing, ideally, development
teams should follow the prescriptions of the test automation pyra-
mid [8], which suggests first writing unit tests that evaluate small,
functionally discrete portions of code to spot specific implementa-
tion issues and quickly identify regressions during software evolu-
tion. Despite their usefulness, prior work has illustrated that once
a project reaches a certain complexity, incorporating unit tests re-
quires a substantial effort in traceability, decreasing the likelihood
of unit test additions [16]. Further challenges exist for updating
existing unit tests during software evolution and maintenance [16].

To help address these issues the software testing research com-
munity has responded with a wealth of research that aims to help
developers by automatically generating tests [9, 24]. However, re-
cent work has pointed to several limitations of these automation
tools and questioned their ability to adequately meet the software
testing needs of industrial developers [5, 31]. For example, it has
been found that the assert statements generated by state-of-the-art
approaches are often incomplete or lacking the necessary com-
plexity to capture a designated fault. The generation of mean-
ingful assert statements is one of the key challenges in au-
tomatic test case generation. Assert statements provide crucial

10946)

icci():

== None)




What even is an LLM! (¢

13



Large Language Models

&

® | anguage Modeling: Measure probability of a sequence of words
® |nput: Text sequence

e Output: Most likely next word

o | | Ms are... large

e GPT-3 has 175B parameters

*Not actual size

e GPT-4 is estimated to have ~1.24 Trillion

® Pre-trained with up to a PB of Internet text data

® Massive financial and environmental cost

14




Large Language Models are Pre-trained

&

® Only a few people have resources to train LLMs
® Access through API calls
® OpenAl, Google Vertex Al, Anthropic, Hugging Face

® \\le will treat it as a black box that can make errors!

15




| [ Ms are Far from Perfect

&

16

® Hallucinations
e Factually Incorrect Output

® High Latency
e QOutput words generated one at a
time

e | arger models also tend to be
slower

e QOutput format
e Hard to structure output (e.g.

SSSSSSSSS

print the result of the following Python code:

def f(x):
ifx==1:
returni
return x * (x - 1) * f(x-2)

f(2)

The result of the code is 2.

extracting date from text)
e Some workarounds for this (later)



s an LLM Right for your Problem!? &

17



Which Problem should be Solved by an

M?

&

18

® [ype checking Java code

e (Grading mathematical proofs

® Answering emergency medical questions

e Unit test generation for Node

3

5 devs



Consider Other Options!

&

® Alternative Solutions: Are there alternative solutions to
your task that deterministically yield better results? EQ:

Type checking Java code

® Error Probabillity: How often do we expect the LLM to
correctly solve an instance of your problem? This will
change over time. Eg: Grading mathematical proofs

® Risk tolerance: What’s the cost associated wi

‘h making a

mistake? Eg: Answering emergency medical ¢

uestions

® Risk mitigation strategies: Are there ways to verity
outputs and/or minimize the cost of errors”? Eg: Unit test

generation

19



Practical Factors to Consider

® Operational Costs
® | atency/speed
® |ntellectual property

® Security

20




