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Administrivia
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• SDE Project Part 1 

• Will be Posted to Course Webpage today 

• Due on Tuesday, Sept. 23rd 

• Assignment 3 

• Posted to Course Webpage 

• Also Due on Tuesday Sept. 23rd 

• Course webpage will be fully up later this evening, watch out 
for announcements on Ed Discussions



Intro to Software Architecture
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Learning Goals
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• Understand the abstraction level of architectural reasoning  

• Appreciate how software systems can be viewed at different  
abstraction levels  

• Distinguish software architecture from (object-oriented)  
software design  

• Use notation and views to describe the architecture suitable to  
the purpose  

• Document architectures clearly, without ambiguity 



Views and Abstraction

5



Views & Abstraction
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Views & Abstraction
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Views & Abstraction
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Abstracted Views Focus on Conveying Information
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• They have a well-defined purpose 

• Show only necessary information 

• Abstract away unnecessary details 

• Use legends/annotations to remove ambiguity 

• Multiple views of the same object tell a larger story



Software Architecture Case Study: Autonomous Vehicles
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Case Study: Apollo
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• Check out the “side pass” feature from the video:  

• http://tinyurl.com/cen24-vid   

• Source: https://github.com/ApolloAuto/apollo  

• Doxygen: https://hidetoshi-furukawa.github.io/apollo/
doxygen/index.html 

http://tinyurl.com/cen24-vid
https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html


Apollo Software Architecture
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Apollo Hardware Architecture
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Apollo Hardware/Vehicle Overview
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Apollo Perception Module
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Apollo ML Models
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Apollo Software Stack
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Feature Evolution (Software Stack View)
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Software Architecture
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The software architecture of a program or computing system is the structure or structures of 
the system, which comprise software elements, the externally visible properties of those 

elements, and the relationships among them.  
[Bass et al. 2003]  

Note: this definition is 

ambivalent to whether the


architecture is known,

or whether it’s any good!



Software Design vs. Architecture
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Levels of Abstraction
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• Requirements 

• high-level “what” needs to be done  

• Architecture (High-level design) 

• high-level “how”, mid-level “what”  

• OO-Design (Low-level design, e.g. design patterns) 

• mid-level “how”, low-level “what”  

• Code 

• low-level “how” 



Design vs. Architecture
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• Design Questions


• How do I add a menu item in 
VSCode?  

• How can I make it easy to add 
menu items in VSCode?  

• What lock protects this data?  

• How does Google rank pages?  

• What encoder should I use for 
secure communication?  

• What is the interface between 
objects? 

• Architectural Questions


• How do I extend VSCode with a 
plugin? 

• What threads exist and how do they 
coordinate? 

• How does Google scale to billions of 
hits per day? 

• Where should I put my firewalls? 

• What is the interface between 
subsystems? 



Objects
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Design Patterns
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Design Patterns
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Design Patterns
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Architecture
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Architecture
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Architecture
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Why Document Architecture?
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• Blueprint for the system 
• Artifact for early analysis 
• Primary carrier of quality attributes 
• Key to post-deployment maintenance and enhancement  

• Documentation speaks for the architect, today and 20 
years from today  

• As long as the system is built, maintained, and evolved 
according to its documented architecture  

• Support traceability.



Views & Purposes
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• Every view should align with a purpose  

• • Views should only represent information relevant to that purpose  

• Abstract away other details 

• Annotate view to guide understanding where needed  

• • Different views are suitable for different reasoning aspects (different quality 
goals), e.g.,  

• Performance 

• Extensibility 

• Security 

• Scalability  

• ... 



Common Views in Documenting Software Architecture
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• Static View 

• Modules (subsystems, structures) and their relations 
(dependencies, ...)  

• Dynamic View  

• Components (processes, runnable entities) and 
connectors (messages, data flow, ...)  

• Physical View (Deployment) 

• Hardware structures and their connections 



Common Software Architectures
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1. Pipes & Filters
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Pipes & Filters Example: Compilers
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2. Object Oriented Organization
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3. Event-Driven Architecture
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Example: HTML DOM + Javascript
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4. Blackboard Architecture
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5. Layered Systems
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Example Internet Protocol Suite
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Guidelines for Selecting a Notation
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• Suitable for purpose  

• Often visual for compact representation  

• Usually boxes and arrows  

• UML possible (semi-formal), but possibly constraining 

• Note the different abstraction level – Subsystems or processes, not classes or objects  

• Formal notations available  

• Decompose diagrams hierarchically and in views  

• Always include a legend  

• Define precisely what the boxes mean  

• Define precisely what the lines mean  

• Do not try to do too much in one diagram  

• Each view of architecture should fit on a page  

• Use hierarchy 


