
CEN 5016:
Software 

Engineering

Dr.  Kevin Moran

University of
Central Florida

Fall 2025

Week 5 - Class 1: 
Introduction to 

Software Architecture



Administrivia

2

• SDE Project Part 1 

• Will be Posted to Course Webpage today 

• Due on Tuesday, Sept. 23rd 

• Assignment 3 

• Posted to Course Webpage 

• Also Due on Tuesday Sept. 23rd 

• Course webpage will be fully up later this evening, watch out 
for announcements on Ed Discussions



Intro to Software Architecture

3



Learning Goals

4

• Understand the abstraction level of architectural reasoning  

• Appreciate how software systems can be viewed at different  
abstraction levels  

• Distinguish software architecture from (object-oriented)  
software design  

• Use notation and views to describe the architecture suitable to  
the purpose  

• Document architectures clearly, without ambiguity 



Views and Abstraction

5



Views & Abstraction

6



Views & Abstraction

7



Views & Abstraction

8



Abstracted Views Focus on Conveying Information

9

• They have a well-defined purpose 

• Show only necessary information 

• Abstract away unnecessary details 

• Use legends/annotations to remove ambiguity 

• Multiple views of the same object tell a larger story



Software Architecture Case Study: Autonomous Vehicles

10



Case Study: Apollo

11

• Check out the “side pass” feature from the video:  

• http://tinyurl.com/cen24-vid   

• Source: https://github.com/ApolloAuto/apollo  

• Doxygen: https://hidetoshi-furukawa.github.io/apollo/
doxygen/index.html 

http://tinyurl.com/cen24-vid
https://github.com/ApolloAuto/apollo
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html
https://hidetoshi-furukawa.github.io/apollo/doxygen/index.html


Apollo Software Architecture

12



Apollo Hardware Architecture

13



Apollo Hardware/Vehicle Overview

14



Apollo Perception Module

15



Apollo ML Models

16



Apollo Software Stack

17



Feature Evolution (Software Stack View)

18



Software Architecture

19

The software architecture of a program or computing system is the structure or structures of 
the system, which comprise software elements, the externally visible properties of those 

elements, and the relationships among them.  
[Bass et al. 2003]  

Note: this definition is 

ambivalent to whether the


architecture is known,

or whether it’s any good!



Software Design vs. Architecture

20



Levels of Abstraction

21

• Requirements 

• high-level “what” needs to be done  

• Architecture (High-level design) 

• high-level “how”, mid-level “what”  

• OO-Design (Low-level design, e.g. design patterns) 

• mid-level “how”, low-level “what”  

• Code 

• low-level “how” 



Design vs. Architecture

22

• Design Questions


• How do I add a menu item in 
VSCode?  

• How can I make it easy to add 
menu items in VSCode?  

• What lock protects this data?  

• How does Google rank pages?  

• What encoder should I use for 
secure communication?  

• What is the interface between 
objects? 

• Architectural Questions


• How do I extend VSCode with a 
plugin? 

• What threads exist and how do they 
coordinate? 

• How does Google scale to billions of 
hits per day? 

• Where should I put my firewalls? 

• What is the interface between 
subsystems? 



Objects

23



Design Patterns

24



Design Patterns

25



Design Patterns

26



Architecture

27



Architecture

28



Architecture

29



Why Document Architecture?

30

• Blueprint for the system 
• Artifact for early analysis 
• Primary carrier of quality attributes 
• Key to post-deployment maintenance and enhancement  

• Documentation speaks for the architect, today and 20 
years from today  

• As long as the system is built, maintained, and evolved 
according to its documented architecture  

• Support traceability.



Views & Purposes

31

• Every view should align with a purpose  

• • Views should only represent information relevant to that purpose  

• Abstract away other details 

• Annotate view to guide understanding where needed  

• • Different views are suitable for different reasoning aspects (different quality 
goals), e.g.,  

• Performance 

• Extensibility 

• Security 

• Scalability  

• ... 



Common Views in Documenting Software Architecture

32

• Static View 

• Modules (subsystems, structures) and their relations 
(dependencies, ...)  

• Dynamic View  

• Components (processes, runnable entities) and 
connectors (messages, data flow, ...)  

• Physical View (Deployment) 

• Hardware structures and their connections 



Common Software Architectures

33



1. Pipes & Filters

34



Pipes & Filters Example: Compilers

35



2. Object Oriented Organization

36



3. Event-Driven Architecture

37



Example: HTML DOM + Javascript

38



4. Blackboard Architecture

39



5. Layered Systems

40



Example Internet Protocol Suite

41



Guidelines for Selecting a Notation

42

• Suitable for purpose  

• Often visual for compact representation  

• Usually boxes and arrows  

• UML possible (semi-formal), but possibly constraining 

• Note the different abstraction level – Subsystems or processes, not classes or objects  

• Formal notations available  

• Decompose diagrams hierarchically and in views  

• Always include a legend  

• Define precisely what the boxes mean  

• Define precisely what the lines mean  

• Do not try to do too much in one diagram  

• Each view of architecture should fit on a page  

• Use hierarchy 


