CEN 501 é:

Soft

:n;ngjﬁg Week 4 - Class I:

; Software lesting
Fall 2025

v &

& e 15|

Dr. Kevin Moran

Administrivia

&

e Jeam-forming due by Thursday!
e |f you are not on a team, let me know and | can try to help
e Assignment 2 Posted

e Getting familiar with FakeFlix, the subject of our SDE
project

e Both parts of the Assignment due Sept 12th!

¢ | have posted resources related to Javascript and React
fromm my past web dev courses to assist.

e (et started today!
e SDE Project Checkpoint 1 will be posted by Thursday.

Software leams & Communication (¢

Knowledge Sharing &

No matter the format,

documentation is
Important

Building on top of others’ work in a community-
like way can be an accelerator, both in open
source and in companies. Documentation
often signals if a repository is reliable to reuse
code from, or if it’'s an active project to
contribute to. What signs do developers look

for?

In both open source projects and
enterprises, developers see about

5@ Yo

productivity boost with easy-to-
source documentation

Importance of Documentation

What the data shows: At work, developers consider
documentation trustworthy when it is up-to-date (e.g., looking
at time-stamps) and has a high number of upvotes from
others. Open source projects use BEADMEs, contribution
guidelines, and GitHub Issues, to elevate the quality of any
project, and to share information that makes them more
attractive to new contributors. Enterprises can adopt the same

best practices to achieve similar success.

In both environments, developers see about a 50%
productivity boost when documentation is up-to-date,
detailed, reliable, and comes in different formats (e.g. articles,

videos, forums).

Using the data: Review the documentation your team
consumes: When was the last time it was updated? Can
everyone on your team improve the documentation? Check

this frequently to stay on track.

Types of Documentation &

Knowledge Type Description (Excerpt)

Functionality and Behavior Describes what the API does (or does not do) in terms of functionality or features. Describes
what happens when the API is used (a field value is set, or a method is called).

Concepts Explains the meaning of terms used to name or describe an APl element, or describes
design or domain concepts used or implemented by the APL

Directives Specifies what users are allowed / not allowed to do with the API element. Directives are
clear contracts.

Purpose and Rationale Explains the purpose of providing an element or the rationale of a certain design decision.

Typically, this is information that answers a “why” question: Why is this element provided
by the API? Why is this designed this way? Whv would we want to use this?

Quality Attributes and Internal Aspects Describes quallty attributes of the API, also known as non-functional requirements, for
example, the performance implications. Also applies to information about the API’s internal
implementation that is only indirectly related to its observable behavior.

Control-Flow Describes how the API (or the framework) manages the flow of control, for example by
stating what events cause a certain callback to be triggered, or by listing the order in which
API methods will be automatically called by the framework itself.

Structure Describes the internal organization of a compound element (e.g. important classes, fields,
or methods), information about type hierarchies, or how elements are related to each other.

Patterns Describes how to accomplish specific outcomes with the API, for example, how to
implement a certain scenario, how the behavior of an element can be customized, etc.

Code Examples Provides code examples of how to use and combine elements to implement certain
functionality or design outcomes.

Environment Describes aspects related to the environment in which the API is used, but not the API
directly, e.g., compatibility issues, differences between versions, or licensing information.

References Includes any pointer to external documents, either in the form of hyperlinks, tagged "see
also” reference, or mentions of other documents (such as standards or manuals).

Non-information A section of documentation containing any complete sentence or self-contained fragment

of text that provides only uninformative boilerplate text.

Maalej, W., & Robillard, M. P. (2013). Patterns of knowledge in API reference documentation. IEEE Transactions on Software Engineering, 39(9), 1264-1282.

Know Your Audience &

® |nternal document for your team (e.g., meeting note)
® Documentation for project contributors

® Documentation for non-developer collaborators (e.g., UX
researchers)

® Documentation for developer users

® Documentation for clients with no software knowldge

® User manual for end users

Importance of Asking Questions &

THEONLY DUMB
QIIESTIIIN *

How to Ask Questions (¢

New To Coding. Can anyone assist me?

Asked 7 years, 1 month ago Modified 7 years, 1 month ago Viewed 47 times

| am trying to make a word counter and | just cant seem to get it. Can anyone help?

-4 import re
print("Welcome To This Software Made By Aaron!")
word = raw_input("Enter Your Words: ")
Check = 0
Right = 0
Length = len(word)
while True:
if Right == 1:
if Length < Check:
Check = Check + 1
print(Check)
if Length == Check:
Right = 1

v
. ‘Q g
- R
print("Your Word Count Is " +Check) “Elp ME\“E[P 0“
|

Make 1t

—asy for

People to Help You

&

® |lamtryingto__ ,sothatlcan__ .| am running into

| have looked at andtried .

® + |'m using this tech stack: __ .

® + |’m getting this error/result: ___.

® + | think the problem could be .

10

Avoid Duplication

&

OH,IT'S OKAY.

IT'S NOT LIKE I'VEALREADY
ANSWERED THIS QUESTION FROM
4 OTHER STUDENTS IN THIS GLASS.

11

Authors:

Authors Info & Claims

TICLE Y ino f
Mining duplicate questions in stack overflow

Muhammad Ahasanuzzaman Muhammad Asaduzzaman Chanchal K. Roy Kevin A. Schneider

Published: 04 November 2015

Studying the needed effort for identifying duplicate
issues

Mohamed Sami Rakha 4, Weiyi Shang & Ahmed E. Hassan

Empirical Software Engineering 21, 1960-1989 (2016) | Cite this article
748 Accesses | 19 Citations | 1 Altmetric \ Metrics

Abstract

Many recent software engineering papers have examined duplicate issue reports. Thus far,
duplicate reports have been considered a hindrance to developers and a drain on their
resources. As a result, prior research in this area focuses on proposing automated approaches

to accurately identify duplicate reports. However, there exists no studies that attempt to

Resolving Conflicts

G .

12

Resolving Conflicts

&

Updated with New Approaches for Today's Communication Challenges

OVER 5 MILLION COPIES SOLD

crucial

conversations

THIRD EDITION

—e

TOOLS FOR TALKING WHEN
STAKES ARE HIGH

JOSEPH GRENNY « KERRY PATTERSON * RON McMILLAN
AL SWITZLER - EMILY GREGORY

13

Communication!

Communication

Communication

You can’t solve any Problem
without Communication!

Communication

14

Conflict Resolution (¢

15

® Your goal: Find a solution to the problem and move forward.
e As a smart person on "TedlLasso” once said,“Fight forward,not back.”

® \ake sure that everybody works from the same set of facts.

® [Establish ground rules for your team’s discussion.
¢ [alk about how the situation made you feel.Never presume anything albout
anyone else.

e Remain calm and rational. If you feel triggered or threatened, extract yourself from
the situation, wait an hour to chill out, and then try again.

® |f you reach an impasse, talk to your team leader.

® |f your team remains in conflict, escalate to Dr. Moran.
e | can help to mediate

Software lesting

G .

16

Learning Goals &

17

Identify the scope and limitations of software testing

Appreciate software testing as a methodology to use automation in improving
software quality

Describe the benefits of using continuous integration and deployment (CIl/CD)
Measure the quality of software tests and define test adequacy criteria

Enumerate different levels of testing such as unit testing, integration testing,
system testing, and testing in production

Describe the principles of test-driven development
Outline design principles for writing good tests

Recognize and avoid testing anti-patterns

What is Testing Good For? &

® \What is testing”?

® Execution of code on sample inputs in a controlled
environment

® Principle goals:

e \/alidation: program meets requirements, including
quality attributes.

® Defect testing: reveal failures.

18

What Is lesting Good For?

&

Why should we test? What does testing achieve?

® \Vhat does testing not achieve?

When should we test?
® And where should we run the tests?
e What should we test?

e \What CAN we test? (Software quality attributes)

How should we test?

® How many ways can you test the sort() function?
« How good are our tests?

® How to measure test quality?

19

What Makes a Good lest? (¢

20

What Makes a Good lest?

&

€, Om OpenBudgeteer

Manage your Budget
v with Buckets

() Docker Image (pre-release) M () Docker Image (latest) M

https://github.com/TheAxelander/OpenBudgeteer

21

What Makes a Good lest!?

OpenBudgeteer t ansact MBucket + t |« t ta I t V 1.3 (Change Log

Income Expenses Month Balance Bank Balance
3.761,17 € -9.111 .34 € -5.350,17 € 20.793,14 €
Budget 3 ! Pending Want — Remaining Budget Negative Bucket Balance
484,89 € 0,00 € : 7 484,89 € 0,00 €
Create Bucket Group Distribute Budget J§ Collapse All Expend All Feb v | 2020
Bucket Balance InOut Want In Activity Details
¥ Monthly Expenses 82,42
Bucket 1 0,00 0 0,99 -0,99
Bucket 2 0,00 23,44 -23,44
Bucket 3 79.43 0 1.140,78 -1.114,59
Bucket 4 (Inactive from: 01.04.2020) 0,00 0 754,17 754,17
¥ Non-Monthly Expenses 600,92
Bucket 5 4476 7,46 e PO
89,50 until 2020-08
Bucket 6 48,47 0 45,59 o% S
550,00 until 2021-01
SRS L 11,00 until 2020-04
Bucket 8 0,00 0 17,50 -52,50 T
¥ Living Expenses 336,57
Car 132,91 0 50,00
Groceries 203,66 0 250,00 -199,67
Others 0,00
Public Transport 0,00
Treatment Expenses 0,00

https://github.com/TheAxelander/OpenBudgeteer

22

Why Write Tests at All? &

23

® [ow bar] Ensure that our software meets requirements, is correct, etc.

® Preventing bugs or quality degradations from being accidentally introduced in
the future -> Regression Testing

® Helps uncover unexpected behaviors that can’t be identified by reading
source code

® |[ncreased confidence in changes (“will | break the internet with this commit?”)

® Bridges the gap between a declarative view of the system (i.e., requirements)
and an imperative view (i.e., iImplementation) by means of redundancy.

® [ests are executable documentation; increases code maintainability

® [orces writing testable code <-> checks software design

Jesting Levels

&

Unit testing
® Code level, E.g. is a function implemented correctly?

® [Does not require setting up a complex environment

Integration testing

® Do components interact correctly? E.g. a feature that cuts across client and
server.

e Usually requires some environment setup, but can abstract/mock out other
components that are not being tested (e.g. network)

e System testing
e \/alidating the whole system end-to-end (E2E)

® Requires complete deployment in a staging area, but fake data

Testing in production

® Real data but more risks

24

What are the Limitations of Testing? &

® "Jesting shows the presence, not the absence of bugs.” -
Edsger W. Dijkstra

® [esting doesn’t really give any formal assurances
® \\Vriting tests Is hard, time consuming
e Knowing Iif your tests are good enough is not obvious

® Executing tests can be expensive, especially as software
complexity and configuration space grows

® [ull test suite for a single large app can take several days
to run

25

What can We lest for? (¢

26

Test Oracles (¢

® “Oracles” are mechanisms that tell you when program
execution seems abnormal or unexpected

® [.g. assert, segfault, exception

® Other examples: performance threshold, memory
footprint, address sanitizer

27

Test Oracles

&

® Obvious in some applications (e.g. “sort()”) but more
challenging in others (e.g. “encrypt()” or Ul-based tests)

® | ack of good oracles can limit
—asy to generate lots of input C

‘he scalabillity of testing.
ata, but not easy to

validate if output (or other prog

ram behavior) is correct.

® [ortunately, we have some tricks.

28

Differential Testing

® |f you have two implementations of the same specification, then their output
should match on all inputs.
e £.9. mergeSort(x).equals(bubbleSort(x)) -> should always be true
e Special case of a property test, with a free oracle.

® |f a differential test fails, at least one of the two implementations is wrong.
e But which one”?
e [f you have N>2 implementations, run them all and compare. Majority wins
(the odd one out is buggy).

e Differential testing works well when testing programs that implement
standard specifications such as compilers, browsers, SQL engines, XML/
JSON parsers, media players, etc.

e Not feasible in general e.g. for UCF’s custom grad application system.

Regression lesting

&

® Dif

erential testing through time (or versions, say V1 and

V2).

® Assuming V1 and V2 don’t add a new feature or fix a

known bug, then f(x) in V1 should give the same result as
f(x) In V2.

® Key ldea: Assume the current version is correct. Run
program on current version and log output. Compare all
future versions to that output.

30

When Should We lest! (¢

31

lest

Driven Development

&

32

® [ests first!

® Popular agile technigue

® \\rite tests as specifications before code

® Never write code without a failing test

® Claims:

e Design approach toward testable design

e [hink about Interfaces first
e Avoid unneeded code

igher product quality
igher test suite quality
igher overall productivity

Common Bar for Contributions &

Chromium
e Changes should include corresponding tests. Automated testing is at
the heart of how we move forward as a project. All changes should
include corresponding tests so we can ensure that there is good
coverage for code and that future changes will be less likely to regress
functionality. Protect your code with tests!

Firefox

Testing Policy

Everything that lands in mozilla-central includes automated
tests by default. Every commit has tests that cover every

major piece of functionality and expected input conditions.

Docker

33

Conventions

Fork the repo and make changes on your fork in a feature branch:

« Ifit's a bugfix branch, name it XXX-something where XXX is the number of the issue
« Ifit's a feature branch, create an enhancement issue to announce your intentions, and name it XXX-
something where XXX is the number of the issue.

Submit unit tests for your changes. Go has a great test framework built in; use it! Take a look at existing t
inspiration. Run the full test suite on your branch before submitting a pull request.

1

Regression Testing &

® Usual model:
® |ntroduce regression tests for bug fixes, etc.
® Compare results as code evolves
® Codel + TestSet -> TestResults
 Code2 + TestSet -> TestResults2
® As code evolves, compare TestResults1 with TestResults?2, etc.
® Benefits:
® Ensure bug fixes remain in place and bugs do not reappear.

® Reduces reliance on specifications, as <TestSet, TestResults1> acts as one.

34

cCOMMIT

X (&

@

RELATED CODE

@

REVIEW

STAGING PRODUCTION

ol {0—0—0—-0
BUILD UNIT INTEGRATION
TESTS TESTS

CI PIPELINE

ol J -0

CD PIPELINE

35

low GoocC

Are Our lests!

G .

36

Code Coverage

&

37

® | ine coverage
e Statement coverage

Sranch coverage
nstruction coverage
Basic-block coverage
—dge coverage

Path coverage

Code Coverage

LCOV - code coverage report
Current view: top level - test Hit Total
Test: coverage.info Lines: 6092
Date: 2018-02-07 13:06:43 Functions: 481
. Fllename Line Coverage ¢ ___ Functions$

sl steing table test.c _ | 100.0 % 212
250 tise test.¢ == 100.0 % 1
had dtls tost.c [] 97.6 % 163/167 100.0 % 9/9
bitestc o TS s 81.5% /8
hio s test.C | 78.7% 74194 100.0 % 9/9
hatest.c] 97.7% 1038/1062 100.0 % 45/45
chicha faternal test.c | — 833% 10/12 100.0 % 212
Clghername test. ([100.0 % 212
seltestic [100.0 % 90/90 100.0 % 12/12
Shtest.c] 95.5 % 22/ 100.0 % 20/20
Ritestc) R 1000% 2/2
dacatest < | e— 755% 123/163 100.0 % 10/10
dhtest.c = 84.6 % 88/104 100.0 % 4/4
detgtest.c [E— XL L 92.9% 13/14
dtls aty test.c — 86.8% 59/68 100.0 % 5/5
dilstest.c 97.1% 34/35 100.0 % 4/4
dtlsvilistentest.c] 94.9% 31139 100.0 % 4/4
scdsatest < —— 94.0 % 140/149 100.0 % 1
angingtest.c) 92.8% 141/152 100.0 % m
LTETTERCIN [] 100.0 % 1m2/112 100.0 % 10/10
fatalerrtest.c |1 89.3% 25/28 100.0 % 212
hardshake helper.c —) 84.7% 494583 97.4% 38/39
haactest.c [] 100.0 % nm 100.0 % 117
Aeatest.C] 100.0 % 30/30 100.0 % 4/4
igtest.c | — 87.9% 109/124 100.0 % /1

hash_test | — 78.6 % 66/84 100.0 % 8/8
2 internal test.c | — 81.8% 91 100.0 % 2/2
et] 100.0 % 18/18 100.0 % 212
acspapitest.c I 95.5% 64/67 100.0 % 4/4
pagkette: [] 100.0 % 248/ 248 100.0 % 0/

100

104
105
106
107
108
10

110
111
11

113
11

115
11

117
11

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

e

NN N

~ NN

L. L1 A\ = DOLMaEdI M. T LIdLAMIaDIILLA, NiadiivuLy) = W)

else {

8 o / 1. goto fail;
101 : /* DSA, ECDSA - just use the SHA1l hash */
10
10

}
1: hashout.data = hashes + SSL_MDS_DIGEST_LEN;
L hashout.length = SSL_SHAl_DIGEST_LEN;
1: if ((err = SSLFreeBuffer(&hashCtx)) != 0)
1: 1f ((err = ReadyHash(&SSLHashSHA1l, &hashCtx)) != 0)
e 1f ((err = SSLHashSHAl.update(&hashCtx, &clientRandom)) != 0)
I 1f ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
e 1f ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
1: goto fail;

1f ((err = SSLHashSHAl.final(&hashCtx, &hashout)) != 0)

goto fail;

err = sslRawverify(ctx,
ctx->peerPubKey,
dataToSign,
dataToSignLen,
signature,
signatureLen);
i1f(err) {

sslErrorLog("SSLDecodeSignedServerKeyExchange:

"returned %d\n", (int)err);

goto fail;
}
. fail:
i SSLFreeBuffer (&signedHashes) ;
Ut SSLFreeBuffer(&hashCtx) ;

1: return err;

/* plaintext *
/* plaintext 1

sslRawverify "

38

We Can Measure Coverage on Almost Anything &

- J J tew CtriaN
line, 3) ; G Open.. CtO

it (=
Cleardlpline = **

Ixit Functiom

[% ot Appuc SEIGH = TOvamarS) o

New

Yew Draw

ChrieN

CrieN

Chri+O

Qbject W

)D R 2T B Drawch Applscation - [(

B e |6 o Ov

J) bew Chele

Chrk

E® Yew Drow Cblect m'?\?m}

\ J 3w
: q..‘l.;p-

D pe e vow praw
J J New Christ:

———

39

Be Aware of Coverage Chasing &

® Recall: issues with metrics and incentives
e Also: Numbers can be deceptive

® 100% coverage != exhaustively tested
e “Coverage is not strongly correlated with suite
effectiveness”

e Based on empirical study on GitHub projects
Inozemtseva and Holmes, ICSE’14]

e Still, it's a good low bar
e Code that is not executed has definitely not been tested

40

Coverage of What! &

® Distinguish code being tested and code being executed
® | brary code >>>> Application code

® (Can selectively measure coverage
e All application code >>> code being tested

® Not always easy to do this within an application

41

Coverage |= Outcome

&

e \Vhat’s better, tests that always pass or tests that always fail”
® [ests should ideally be falsifiable. Boundary determines
® specification

® |deally:
e Correct implementations should pass all tests
e Buggy code should fail at least one test
e |ntuition behind mutation testing (we’ll revisit this next week)

e \What if tests have bugs?
e Pass on buggy code or fail on correct code

® Fven worse: flaky tests
e Pass or fail on the same test case nondeterministically

e \What’s the worst type of test”

42

lest Design Principles

&

e Use public APIs only

e Clearly distinguish inputs, configuration, execution, and
oracle

® Be simple; avoid complex control flow such as
conditionals and loops

® [ests shouldn’'t need to be frequently changed or
refactored

e Definitely not as frequently as the code being tested
changes

43

Antl-Patterns

&

44

® SNOopy oracles
e Relying on implementation state instead of observable behavior
e £.g. Checking variables or fields instead of return values

® Brittle tests
e Overfitting to special-case behavior instead of general principle
e E.g. hard-coding message strings instead of behavior

® Slow tests
e Self-explanatory(beware of heavy environments, 1/0, and sleep())

® [aky tests
¢ [ests that pass or fail nhondeterministically
e Often because of reliance on random inputs, timing (e.g. sleep(1000)),
availability of external services (e.g. fetching data over the network in a unit
test), or dependency on order of test execution (e.g. previous test sets up
global variables in certain way)

Takeaways &

® Most tests that you will write will be muuuuuuch more complex than
testing a sort function.

® Need to set up environment, create objects whose methods to test,
create objects for test data, get all these into an interesting state, test
multiple APIs with varying arguments, etc.

o Many tests will require mocks (i.e., faking a resource-intensive
component).

® (GGeneral principles of many of these strategies still apply:
¢ \\riting tests can be time consuming
e Determining test adequacy can be hard (if not impossible)
e [est oracles are not easy
e Advanced test strategies have trade-offs (high costs with high returns)

45

