
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Fall 2025

Week 3 - Class 1:
Project Planning &
Agile Development

Administrivia

2

• Let me know if you are not on Ed Discussions

• Team-forming this week - Due Thurs, Sept 11th

• Teams of 3 students

• See Ed Discussions Post

• Assignment 1 Graded by tomorrow

• Assignment 2 out tomorrow

Software Measurement & Metrics

3

Simplistic Productivity Measures

4

• Lines of code per day?
• Industry average 10-50 lines/day
• Debugging + rework ca. 50% of time

• • Function/object/application points per month • Bugs
fixed?
• Milestones reached?

Incentivizing Productivity

5

• What happens when developer bonuses are based on

• Lines of code per day?

• Amount of documentation written?

• Low number of reported bugs in their code?

• Low number of open bugs in their code?

• High number of fixed bugs?

• Accuracy of time estimates?

Developer Productivity Myths

6

• Productivity is all about developer activity

• Productivity is only about individual performance

• One productivity metric can tell us everything

• Productivity measures are useful only for managers

• Productivity is only about engineering systems and
developer tools

WARNING!!

7

• Most software metrics are controversial
• Usually only plausibility arguments, rarely rigorously validated
• Cyclomatic complexity was repeatedly refuted, yet is still used
• “Similar to the attempt of measuring the intelligence of a person in terms of
the weight or circumference of the brain”

• Use carefully!

• Code size dominates many metrics

• Avoid claims about human factors (e.g., readability) and quality, unless
validated

• Calibrate metrics in project history and other projects

• Metrics can be gamed; you get what you measure

Summary

8

• Measurement is difficult but important for decision making

• Software metrics are easy to measure but hard to
interpret,
validity often not established

• Many metrics exist, often composed; pick or design
suitable metrics if needed

• Careful in use: monitoring vs incentives

• Strategies beyond metrics

Questions to Consider for Your Projects

9

• What properties do we care about and how do we
measure them?

• What is being measured? Does it (to what degree)
capture the thing you care about? What are its
limitations?

• How should it be incorporated into process?

• What are potentially negative side effects or incentives?

Project Planning & Agile Development

10

Learning Goals

11

• Recognize the importance of project planning

• Understand the difficulty of measuring progress

• Identify why software development has project
characteristics

• Use milestones for planning and progress measurement

• Understand backlogs and user stories

• Get to know your team!

Software Process

12

• “The set of activities and associated results that produce
a software product.”

All Software Development Processes

13

Effort Spent During the Process

14

Effort Spent During the Process

15

Let’s Improve the Reliability of this Process

16

• Write down all requirements

• Review requirements

• Require approval for all changes to requirements

• Use version control for all changes

• Review code

• Track all work items

• Break down feature development into small tasks

• Write down and monitor all reported bugs

• Hold regular, frequent status meetings

• Plan and conduct quality assurance

• Employ a DevOps framework to push code between developers and operations

Effort Spent During the Process

17

Effort Spent During the Process

18

Example Process Issues

19

• Change Control: Mid-project informal agreement to changes suggested by
customer. Project scope expands 25-50%

• Quality Assurance: Late detection of requirements and design issues. Test-
debug-reimplement cycle limits development of new features. Release with
known defects.

• Defect Tracking: Bug reports collected informally. Bugs are overlooked.

• System Integration: Integration of independently developed components at
the very end of the project. Interfaces out of sync.

• Source Code Control: Accidentally overwrote changes. Lost work.

• Scheduling: Late project. Developers asked to re-estimate work effort
weekly.

Effort Spent During the Process

20

Defect Correction Effort

21

Planning

22

Time Estimation

23

Activity: Estimate Time

24

• Task A: Web version of the Monopoly board game with
Orlando street names
• Team: just you

• Task B: Bank smartphone app
• Team: you with team of 4 developers, one
experienced with iPhone apps, one with background in
security

• Estimate: 8h days, 20 workdays in a month, 220
workdays per year

Revise Time Estimate

25

• Do you have comparable experience to base an
estimate on?

• How much design do you need for each task?

• How much testing time do you need for each task?

• Let’s break down the task into ~5 smaller tasks and
estimate
their lengths.

• Revise our overall estimate, if necessary

Wisdom of the Crowd

26

Measuring Progress

27

• “I’m almost done with the app. The frontend is almost
fully implemented. The backend is fully finished except
for the one stupid bug that keeps crashing the server. I
only need to find the one stupid bug, but that can
probably be done in an afternoon. We should be ready
to release next week.”

Measuring Progress

28

• Developer judgment: x% done

• Lines of code?

• Functionality?

• Quality?

Milestones and Deliverables Make Progress
Observable

29

• Milestone: clear end point of a (sub)tasks

• For project manager

• Reports, prototypes, completed subprojects

• “80% done“ is not a suitable mile stone

• Deliverable: Result for customer

• Similar to a milestone, but for customers

• Reports, prototypes, completed subsystems

Processes

30

Waterfall was the OG Software Process

31

Akin to Processes Pioneered in Auto
Manufacturing by Ford

32

LEAN Production Adapts to Variable Demand

33

• Toyota Production System (TPS)

• Build only what is needed, only when it is needed.

• Use the “pull” system to avoid overproduction (Kanban)

• Stop to fix problems, to get quality right from the start
(Jidoka)

• Workers are multi-skilled and understand the whole
process; take
ownership

• Lots of recent software buzzwords build on these ideas

• Just-in-time, DevOps, Shift-Left

Now, Most Teams use some form of Agile Methods

34

Now, Most Teams use some form of Agile Methods

35

Core Concepts in Agile

36

Scrum

37

Elements of Scrum

38

Backlogs

39

• The product backlog is all the features for the
product

• The sprint backlog is all the features that will be
worked on for that sprint. These should be
broken down into discrete tasks:
• Fine-grained
• Estimated
• Assigned to individual team members
• Acceptance criteria should be defined

• User Stories are often used

Kanban Boards

40

Scrum Meetings

41

• Sprint Planning Meeting
• Entire Team decides together what to tackle for that sprint

• Daily Scrum Meeting
• Quick Meeting to touch base on :
 • What have I done?
 • What am I doing next?
 • What am I stuck on/need help?

• Sprint Retrospective
• Review sprint process

• Sprint Review Meeting
• Review Product

User Stories

42

User Stories

43

Card

44

• “As a [role], I want [function], so that [value]”

Card

45

• What must a developer do to implement this user story?

Confirmation

46

• How can we tell that the user story has been achieved

• It’s easy to tell when the developer finished the code.

• But, how do you tell that the customer is happy?

How to Evaluate a User Story

47

Independent

48

• Schedule in any order.

• Not overlapping in concept.

• Not always possible.

Negotiable

49

• Details to be negotiated during
development.

• A good story captures the essence,
not the details.

Valuable

50

• This story needs to have value to
someone (hopefully the customer).

• Especially relevant to splitting up
issues.

Estimable

51

• Helps keep the size small.

• Ensure we negotiated correctly.

• “Plans are nothing, planning is
everything” - Dwight D. Eisenhower

Small

52

• Can be written on a 3x5 card.

• At most two person-weeks of work.

• Too big === unable to estimate

Testable

53

• Ensures understanding of task

• We know when we can mark task
“Done”

• Unable to test === I do not
understand it

