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Administrivia

2

• Let me know if you are not on Ed Discussions 

• Team-forming this week - Due Thurs, Sept 11th 

• Teams of 3 students 

• See Ed Discussions Post 

• Assignment 1 Graded by tomorrow 

• Assignment 2 out tomorrow



Software Measurement & Metrics
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Simplistic Productivity Measures
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• Lines of code per day? 
• Industry average 10-50 lines/day 
• Debugging + rework ca. 50% of time  

• • Function/object/application points per month • Bugs 
fixed? 
• Milestones reached? 



Incentivizing Productivity
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• What happens when developer bonuses are based on 

• Lines of code per day?  

• Amount of documentation written? 

• Low number of reported bugs in their code? 

• Low number of open bugs in their code? 

• High number of fixed bugs? 

• Accuracy of time estimates? 



Developer Productivity Myths
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• Productivity is all about developer activity  

• Productivity is only about individual performance  

• One productivity metric can tell us everything  

• Productivity measures are useful only for managers  

• Productivity is only about engineering systems and 
developer tools



WARNING!!
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• Most software metrics are controversial  
• Usually only plausibility arguments, rarely rigorously validated  
• Cyclomatic complexity was repeatedly refuted, yet is still used  
• “Similar to the attempt of measuring the intelligence of a person in terms of 
the weight or circumference of the brain”  

• Use carefully!  

• Code size dominates many metrics  

• Avoid claims about human factors (e.g., readability) and quality, unless 
validated  

• Calibrate metrics in project history and other projects  

• Metrics can be gamed; you get what you measure 



Summary
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• Measurement is difficult but important for decision making  

• Software metrics are easy to measure but hard to 
interpret,  
validity often not established  

• Many metrics exist, often composed; pick or design 
suitable metrics if needed  

• Careful in use: monitoring vs incentives  

• Strategies beyond metrics 



Questions to Consider for Your Projects
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• What properties do we care about and how do we 
measure them?  

• What is being measured? Does it (to what degree) 
capture the thing you care about? What are its 
limitations?  

• How should it be incorporated into process?  

• What are potentially negative side effects or incentives? 



Project Planning & Agile Development
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Learning Goals
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• Recognize the importance of project planning  

• Understand the difficulty of measuring progress  

• Identify why software development has project 
characteristics  

• Use milestones for planning and progress measurement  

• Understand backlogs and user stories  

• Get to know your team! 



Software Process
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• “The set of activities and associated results that produce 
a software product.”



All Software Development Processes
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Effort Spent During the Process
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Effort Spent During the Process
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Let’s Improve the Reliability of this Process
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• Write down all requirements 


• Review requirements  

• Require approval for all changes to requirements  

• Use version control for all changes 


• Review code  

• Track all work items 


• Break down feature development into small tasks  

• Write down and monitor all reported bugs  

• Hold regular, frequent status meetings 


• Plan and conduct quality assurance 

• Employ a DevOps framework to push code between developers and operations 



Effort Spent During the Process
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Effort Spent During the Process
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Example Process Issues
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• Change Control: Mid-project informal agreement to changes suggested by 
customer. Project scope expands 25-50%  

• Quality Assurance: Late detection of requirements and design issues. Test- 
debug-reimplement cycle limits development of new features. Release with 
known defects.  

• Defect Tracking: Bug reports collected informally. Bugs are overlooked.  

• System Integration: Integration of independently developed components at  
the very end of the project. Interfaces out of sync.  

• Source Code Control: Accidentally overwrote changes. Lost work.  

• Scheduling: Late project. Developers asked to re-estimate work effort 
weekly. 



Effort Spent During the Process
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Defect Correction Effort
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Planning
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Time Estimation
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Activity: Estimate Time
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• Task A: Web version of the Monopoly board game with 
Orlando street names  
• Team: just you  

• Task B: Bank smartphone app  
• Team: you with team of 4 developers, one 
experienced with iPhone apps, one with background in 
security  

• Estimate: 8h days, 20 workdays in a month, 220 
workdays per year



Revise Time Estimate
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• Do you have comparable experience to base an 
estimate on?  

• How much design do you need for each task?  

• How much testing time do you need for each task?  

• Let’s break down the task into ~5 smaller tasks and 
estimate  
their lengths.  

• Revise our overall estimate, if necessary 



Wisdom of the Crowd
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Measuring Progress
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• “I’m almost done with the app. The frontend is almost 
fully implemented. The backend is fully finished except 
for the one stupid bug that keeps crashing the server. I 
only need to find the one stupid bug, but that can 
probably be done in an afternoon. We should be ready 
to release next week.”



Measuring Progress
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• Developer judgment: x% done 

• Lines of code? 

• Functionality? 

• Quality?



Milestones and Deliverables Make Progress 
Observable
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• Milestone: clear end point of a (sub)tasks 

• For project manager  

• Reports, prototypes, completed subprojects 

• “80% done“ is not a suitable mile stone  

• Deliverable: Result for customer 

• Similar to a milestone, but for customers 

• Reports, prototypes, completed subsystems 



Processes
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Waterfall was the OG Software Process
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Akin to Processes Pioneered in Auto 
Manufacturing by Ford
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LEAN Production Adapts to Variable Demand
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• Toyota Production System (TPS) 

• Build only what is needed, only when it is needed.  

• Use the “pull” system to avoid overproduction (Kanban)  

• Stop to fix problems, to get quality right from the start 
(Jidoka)  

• Workers are multi-skilled and understand the whole 
process; take  
ownership 

• Lots of recent software buzzwords build on these ideas  

• Just-in-time, DevOps, Shift-Left



Now, Most Teams use some form of Agile Methods
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Now, Most Teams use some form of Agile Methods
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Core Concepts in Agile
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Scrum
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Elements of Scrum
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Backlogs
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• The product backlog is all the features for the 
product  

• The sprint backlog is all the features that will be 
worked on for that sprint. These should be 
broken down into discrete tasks:  
• Fine-grained 
• Estimated 
• Assigned to individual team members  
• Acceptance criteria should be defined  

• User Stories are often used 



Kanban Boards
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Scrum Meetings
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• Sprint Planning Meeting 
• Entire Team decides together what to tackle for that sprint  

• Daily Scrum Meeting 
• Quick Meeting to touch base on :  
     • What have I done?  
     • What am I doing next?  
     • What am I stuck on/need help?  

• Sprint Retrospective  
• Review sprint process  

• Sprint Review Meeting  
• Review Product 



User Stories
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User Stories
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Card
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• “As a [role], I want [function], so that [value]”



Card
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• What must a developer do to implement this user story? 



Confirmation
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• How can we tell that the user story has been achieved 

• It’s easy to tell when the developer finished the code. 

• But, how do you tell that the customer is happy?



How to Evaluate a User Story
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Independent
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• Schedule in any order. 

• Not overlapping in concept. 

• Not always possible.



Negotiable
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• Details to be negotiated during 
development. 

• A good story captures the essence, 
not the details.



Valuable
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• This story needs to have value to 
someone (hopefully the customer).  

• Especially relevant to splitting up 
issues.



Estimable
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• Helps keep the size small.  

• Ensure we negotiated correctly.  

• “Plans are nothing, planning is 
everything” - Dwight D. Eisenhower



Small
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• Can be written on a 3x5 card. 

• At most two person-weeks of work. 

• Too big === unable to estimate



Testable
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• Ensures understanding of task 

• We know when we can mark task 
“Done” 

• Unable to test === I do not 
understand it


