CEN 501 6:

Software
-ngineering

Fall 2024

University of
Central Florida

&

Dr. Kevin Moran

Week 7 - Class lI:

Open Source
Software

&
¥
P
oW

Administrivia (&

e Assignment 4
e Due Monday, October 7th
e Exploring Static Analysis Tools and Cl with a simple Python app
e Accept the Assignment on GitHulb Classroom
e SDE Project Part 2
e Due Tuesday, October 15th (updated deadline!)
e You should have already received feedback on your plan!
e WO parts:
e Process & Implementation Snapshot

e Checkpoint Presentation

Midterm Exam Format &

e ? Parts, In-class exam, closed book, 200 points total

e Part 1: Multiple Choice

e 12-15 questions

o \Will test basic knowledge of concepts, select the best answer for
each guestion

e Part 2: Short Answer Questions

e 4-5 questions

e Concepts from class, SE scenarios, answer in a paragraph
e Covers material from Weeks 1-6
e You will have the entire class period to complete the exam

e Please bring your UCF ID to the exam

Open-Source Software &

earning Goals &

® Distinguish between open-source software, free software, and
commercial software.

® |dentify the common types of software licenses and their
implications.

® Distinguish between copyright and intellectual property.

® Express an educated opinion on the philosophical/political debate
between open source and proprietary principles.

® Describe how open-source ecosystems work and evolve, In terms
of maintainers, community contribution, and commercial backing

® |dentify various concerns of commercial entities in leveraging
open-source, as well as strategies to mitigate these.

The Importance of Open-Source &

ALL MODERN DIGITAL

INFRASTRUCTURE
4 log)
Jlgﬁ

£ 5

[k_._l‘ (—J

A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MAINTAINING
SINCE 2003

Why did the commercial
software get a promotion?

Because it knew how to
"package” open-source
code and sell it for a profit!

What 1s Open Source Software!

Proprietary

r@ Uber

ml J TikTok
_
NETFLIX

Open-source

What is Open Source Software? &

® Source code availability
e Right to modify and creative derivative works

e (Often) Right to redistribute derivate works

Brief History

&

e Early Days: Roots trace back to the collaborative
nature of software development in the 1950s and
60s.

* GNU Project (1983): Initiated by Richard Stallman to
create a completely free operating system.

* Open Source Initiative (1998): Founded to promote
open source software after Netscape released its
browser source code.

Open Source Vs Free Software

&

Open Source: Focuses on the practical benefits of
sharing code.

Free Software: Emphasizes ethical and moral aspects
of software freedom.

Common Goal: Both aim to empower users and
developers.

10

Common Misconceptions about Open Source

* Quality

e Myth: Lower quality than proprietary

® Reality: Often meets or exceed industry standards
 Support and Maintenance

e Myth: Lack of Professional support

e Reality: Robust support community
« Security

® Myth: Less secure because code Is public

® Reality: Transparency allows quicker identification and fixing

11

Benefits of Open Source Software

&

* For Individuals
® | earning opportunities
® Customization
e Cost Saving
* For Business
® Fexibility
® Security

e Community Support

12

Open Source Licenses

&

* Copyleft: Requires derivatives to maintain the same
license (e.q., GPL)

 Permissive: Allows proprietary use of modified code
(e.g., MIT, Apache)

13

GNU General Public

icense (GP

&

Type: Copyleft

Key Terms:

e Any derivative work must be distributed with the

same GPL license.

* The source code must be made available to users,
enabling them to modify and redistribute it.

e Commercial use is allowed, but any distributed
version of the software (including commercial ones)

must adhere to the GPL terms.

14

MIT License

&

Type: Permissive

Key Terms:

* The software can be used for personal, commercial,
OF OPEN-SOUrCce PUrposes.

e There’s no requirement to release derivative works as
Open source.

* The original copyright notice and license must be
included in all copies or substantial portions of the
software.

* No warranties or liability are provided by the authors
of the software.

15

Apache License 2.0 &

16

Type: Permissive with additional patent rights

Key Terms:

e Users can use the software for both open-source and
proprietary purposes.

* The license includes an express grant of patent
rights, ensuring that contributors cannot sue users for
patent infringement related to their contributions.

* Modifications to the original software must be clearly
marked.

* The original copyright notice and license must be
included Iin any derivative works.

Most popular Software Licenses

&

Most popular open source licenses worldwide in 2021
*
Apach 34.1%
i
MIT
o
GPL 3.0
<
GPL 2.0 .
BSD 3
=
LGPL 2.1
BSD 2
Microsoft Public
O Statista 2023 &
© Additional Information Show source @

17

Which

icense to Choose!

18

C O @ choosealicense.com

)
X
B2
»
@
(o)
¥

Choose an open source license

An open source license protects contributors and users. Businesses and savvy developers won't touch a project without this protection.

Which of the following best describes your situation?

azh

Ineedtoworkina I want it simple and
community. permissive.
Use the license preferred by the The MIT License is short and to the point. It
community you're contributing to or lets people do almost anything they want

depending on. Your project will fit right in. with your project, like making and
distributing closed source versions.

If you have a dependency that doesn't have

a license, ask its maintainers to add a Babel, .NET, and Rails use the MIT License.

license.

I care about sharing
improvements.

The GNU GPLv3 also lets people do almost
anything they want with your project, except
distributing closed source versions.

Ansible, Bash, and GIMP use the GNU
GPLv3.

What if none of these work for me?

My projectisn’t Iwant more
software. choices.

There are licenses for that. More licenses are available.

Idon’t want to
choose a license.

Here's what happens If you don’t

GNU General Public License: the Copyleft License

19

® Nobody should be restricted by the software they
use. There are four freedoms that every user should
have:
® the freedom to use the software for any purpose,
® the freedom to change the software to suit your
needs,
® the freedom to share the software with your friends
and neighbors, and
® the freedom to share the changes you make.

e Code must be made available

* Any modifications must be relicensed under the same
license (copyleft)

Risks of “Copyleft” Licenses &

20

® Nobody should be restricted by the software they
use. There are four freedoms that every user should
have:
® the freedom to use the software for any purpose,
® the freedom to change the software to suit your
needs,
® the freedom to share the software with your friends
and neighbors, and
® the freedom to share the changes you make.

e Code must be made available

* Any modifications must be relicensed under the same
license (copyleft)

esser GNU Public

icense (

GP

&

21

® Software must be a library

e Similar to GPL but does not consider dynamic binding

as “derivative work”

® S0, proprietary code can depend on LGPL libraries as
long as they are not being modified

® See also: GPL with classpath exception (e.g., Oracle

JDK)

Risk: Inco

mpatible Licenses

&

® Sun open-sourced OpenOffice, but when Sun was
acquired by Oracle, Oracle temporarily stopped the

project

e Many of the community contributors banded together
and created LibreOffice

® Oracle

® | breO
can co
cannot

22

eventually released OpenOffice to Apache

fice changed the project license so LibreOffice

oy changes from OpenOffice but OpenOffice
do the same due to license conflicts

The Open Source Development Model

&

Collaboration and Community

e Distributed Teams: Developers contribute from around the
world.

e Communication Tools: Use of mailing lists, forums, and
version control systems.

Project Management

e Governance Structures: Maintainers, committers, and
contributors.

e Decision-Making: Often merit-based and consensus-driven.

Contribution Guidelines

e Code of Conduct: Sets expectations for participant behavior.
e Contribution Process: Guidelines for submitting code,
reporting issues, and documentation.

23

How to Get Involved

&

24

Contributing to Projects

* |dentify Interests: Choose projects aligned with your skills or
passions.
e Start Small: Begin with documentation, bug fixes, or feature
requests.
e Engage with the Community: Participate in discussions and
follow project guidelines.
Starting Your Own Project

* Planning: Define the project's purpose and goals.
* Licensing: Select an appropriate open source license.

* Promotion: Build a community through outreach and collaboration.

Participating in Communities

* Events and Conferences: Attend or speak at open source events.
* Online Platforms: Join forums, mailing lists, and social media
groups.

Resources and lools

&

Platforms for Collaboration

e GitHub: Hosts repositories and facilitates collaboration.
e GitLab: Provides integrated DevOps lifecycle tools.

e SourceForge: Long-standing platform for open source projects.

Learning Resources

e Documentation: Official project docs, wikis, and READMEs.
e Tutorials and Courses: Online platforms like Coursera, edX,
and freeCodeCamp.
e Community Support: Forums like Stack Overflow and
community chats.
Tools for Development

e Version Control Systems: Git, Mercurial.
e Integrated Development Environments (IDEs): VSCode,
Eclipse.

25

Successful Open Source Projects

&

Linux Operating System

* Overview: Kernel that forms the basis of various operating
systems.
e Impact: Powers servers, desktops, and mobile devices
(Android).
Apache HTTP Server

* Overview: Widely used web server software.

* Significance: Serves a large portion of the world's websites.

Mozilla Firefox

e Overview: Open source web browser.
e Contribution: Advocates for internet privacy and open
standards.

26

Free Software vs. Open Source

&

Perception (from some):
* Anarchy
- Demagoguery
* ldeology
* Altruism

A REMINDER
from
YOUR FRIENDS AT MICROSOFT

27

Open-Source

~COSystems

G .

28

The Cathedral and the Bazaar

&

29

“Lor ot "- wian? bood .J~'-4.‘ W .-:-L'.f. '.:.T' M ¢
sredd daplic atiowny 2hat po far beyound progravwing.”
- Gy haweorak) ‘%

MUSINGS ON LINUX AND OPEN SOURCE
BY AN ACCIDENTAL REVOLUTIOHARY

ERIC S, RAYMOND

WITH A FOREWORD BY 598 YOUNE, CHARMAN & CEO OF RED HAT, ISC.

The Bazaar VWon

&

Cathedral

* Developed centrally by a core
group of members

* Available for all once complete
(or at releases)

 Examples: GMU Emacs, GCC
(back in the 1990s)

e “Sort of” examples today: Chrome
Intelli]

30

Bazaar

* Developed openly and

organically

« Wide participation (in theory,

anyone can contribute)
Examples: Linux

OSS has many stakeholders / contributors

&

31

e Core members
e Often (but not always) includes the original creators
e Direct push access to main repository
e May be further split into admin roles and developers

e External contributors
® Hle bug reports and report other issues
e Contribute code and documentation via pull requests

® Other supporters
e Beta testers (users)
e Sponsors (financial or platform)
e Steering committees or public commenters (for standards and
RFCs)

® Spin-offs
e Maintainers of forks of the original repository

Governance

&

® Some OSS projects are managed by for-profit firms
e Examples: Chromium (Google), Moby (Docker), Ubuntu (Canonical), TensorFlow
(Google), PyTorch (Meta), Java (Oracle)

e Contributors may be a mix of employees and community volunteers

e Corporations often fund platforms (websites, test servers, deployments, repository
hosting, etc.)

e Corporations usually control long-term vision and feature roadmap

® Many OSS projects are managed by non-profit foundations or ad- hoc communities
e Examples: Apache Hadoop/Spark/Hbase/Kaftka/Tomcat (ASF), Firefox (Mozilla),
Python (PSF), NumPy (community)

® Foundations fund project infrastructure via charitable donations

® | ong-term vision often developed via a collaborative process (e.g., Apache) or by
benevolent dictators (e.g., Python, Linux)

e Corporations still heavily rely on community-owned OSS projects ® Many OSS non-

profits are funded by Big Tech (e.g., Mozilla by Google)

32

Risks in not Open-Sourcing?

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram'’s execution across a set of machines, handling ma-

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp

33

Use of Open-Source Software in Companies

ALL MODERN DIGITAL
INFRASTRUCTURE
A
()
it :
0
m A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS
L) BEEN THANKLESSLY
MAINTAINING
SINCE 2003
L
=

34

QUARTZ Make business better.™ 0O a Sendus aTip! m L =

TECH & INNOVATION
NPM ERR

How one programmer broke the
internet by deleting a tiny piece of
code

1 module.exports leftpad;
2+ function leftpad (str, len, ch) {
str = String(str):
var i -1;
('ch ch @) ch
len len str.length;
(++1 len) {
str ch Str;

11}

SRS

Software Licenses

G .

Note: | am not a lawyer (this is not legal advice)

35

Copyright vs. Intellectual Property

&

® |P and Patents cover an idea for solving a problem

—xamples: Machine designs, pharma processes to

manufacture certain drugs, (controversially) algorithms
e Have expiry dates. IP can be licensed or sold/
transferred for $$5.

e Copyrights cover particular expressions of some work

—xamples: Books, music, art, source code

o Automatic copyright assignment to all new work
unless a license authorizes alternative uses.

® Exceptions for trivial works and ideas.

36

Securrty &

Privacy

G .

37

Security & Privacy (&

38

Computer security refers to the practice of protecting
computer systems and networks from unauthorized
access, theft, damage, or disruption.

Confidentiality: Ensuring that sensitive information is
only accessible to authorized individuals.

Integrity: Safeguarding the accuracy and completeness
of data, preventing unauthorized modifications.
Availability: Ensuring that systems and data are
accessible when needed by authorized users, often
through measures like redundancy, fault tolerance, and
disaster recovery

OWASP Top Ten

&

OWASP - Open Web Application Security Project
- Founded in 2001

- Mission to make the software vulnerability visible
- No profit organization

https://owasp.org/www-project-top-ten/

39

OWASP Top Ten

&

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. ldentification and Authentication Failures
8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures
10. Server-Side Request Forgery (SSRF)

40

Broken Access Control

&

Example Attack Scenarios

Scenario #1: The application uses unverified data in a SQL call that is accessing account
information:

pstmt.setString(1, request.getParameter("acct"));
ResultSet results = pstmt.executeQuery();

An attacker simply modifies the browser's 'acct’ parameter to send whatever account number
they want. If not correctly verified, the attacker can access any user's account.

https://example.com/app/accountInfo?acct=notmyacct

Scenario #2: An attacker simply forces browses to target URLs. Admin rights are required for
access to the admin page.

https://example.com/app/getappInfo
https://example.com/app/admin_getappInfo

If an unauthenticated user can access either page, it's a flaw. If a non-admin can access the
admin page, this is a flaw.

Mitigation: Implement strong access controls,

41| always check user roles and permissions.

Cryptographic Failures

&

42

Example: An application encrypts credit card numbers
iIn a database using automatic database encryption.
However, this data is automatically decrypted when
retrieved, allowing a SQL injection flaw to retrieve credit
card numbers In clear text.

Mitigation: Use modern encryption standards like AES
and secure key management.

Injection

&

43

Example Attack Scenarios

Scenario #1: An application uses untrusted data in the construction of the following vulnerable
SQL call:

query = "SELECT * FROM accounts WHERE custID='" + request.getParameter("id") + "'";

Scenario #2: Similarly, an application’s blind trust in frameworks may result in queries that are
still vulnerable, (e.g., Hibernate Query Language (HQL)):

on.createQuery("FROM accounts WHERE custID='" + request.getParameter("id") + "'");

In both cases, the attacker modifies the ‘id’ parameter value in their browser to send: ' UNION
SLEEP(10);-. For example:

http://example.com/app/accountView?id=" UNION SELECT SLEEP(10);--

This changes the meaning of both queries to return all the records from the accounts table. More
dangerous attacks could modify or delete data or even invoke stored procedures.

Insecure Design &

Example: A cinema chain allows group booking
discounts and has a maximum of fifteen attendees
before requiring a deposit. Attackers could threat
model this flow and test if they could book six hundred
seats and all cinemas at once in a few requests,
causing a massive loss of income.

Mitigation: Include secure design principles like threat
modeling and secure design patterns.

24

Security Misconfiguration

public void (IServiceCollection services)
{
// Add CORS services
services.AddCors(options =>
{
options.AddPolicy("AllowAllOrigins"
builder =>
{
builder.AllowAnyOrigin()
.AllowAnyMethod()
.AllowAnyHeader();

Vulnerable and Outdated Components

Description: Using components with known vulnerabilities
can open your application to attack.

Example: An old library with an unpatched security flaw
being exploited by attackers.

Mitigation: Regularly update libraries and third-party
software.

46

Identification and Authentication
. Failures

&

Example: Application session timeouts aren't set
correctly. A user uses a public computer to access an
application. Instead of selecting "logout,” the user
simply closes the browser tab and walks away. An
attacker uses the same browser an hour later, and the
user is still authenticated.

Mitigation: Enforce strong password policies,
iImplement MFA, and secure sessions properly.

47

Software and Data Integrity Failures

&

Description: Trusting insecure software updates or
using code without verifying integrity.

Example: Compromised CIl/CD pipeline delivering
malicious code In a software update.

Mitigation: Implement code signing, secure CI/CD
pipelines, and verify updates.

48

Security Logging and Monitoring
~ Failures

&

Description: Insufficient logging and monitoring can
prevent detection of breaches or attacks.

Example: Failing to log suspicious activities like failed
login attempts.

Mitigation: Enable comprehensive logging and actively
monitor for anomalies.

49

Server-Side Request Forgery (SSRF)

&

Description: SSRF occurs when an attacker tricks the

server into making unintended requests to other
systems.

Example: Exploiting a web application to send
unauthorized requests to internal services.

Mitigation: Validate and sanitize all external requests,
restrict internal server access.

50

