
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Fall 2024

Week 7 - Class II:
Open Source

Software

Administrivia

2

• Assignment 4

• Due Monday, October 7th

• Exploring Static Analysis Tools and CI with a simple Python app

• Accept the Assignment on GitHub Classroom

• SDE Project Part 2

• Due Tuesday, October 15th (updated deadline!)

• You should have already received feedback on your plan!

• Two parts:

• Process & Implementation Snapshot

• Checkpoint Presentation

• 2 Parts, In-class exam, closed book, 200 points total

• Part 1: Multiple Choice

• 12-15 questions

• Will test basic knowledge of concepts, select the best answer for
each question

• Part 2: Short Answer Questions

• 4-5 questions

• Concepts from class, SE scenarios, answer in a paragraph

• Covers material from Weeks 1-6

• You will have the entire class period to complete the exam

• Please bring your UCF ID to the exam
3

Midterm Exam Format

Open-Source Software

4

Learning Goals

5

• Distinguish between open-source software, free software, and
commercial software.

• Identify the common types of software licenses and their
implications.

• Distinguish between copyright and intellectual property.

• Express an educated opinion on the philosophical/political debate
between open source and proprietary principles.

• Describe how open-source ecosystems work and evolve, in terms
of maintainers, community contribution, and commercial backing

• Identify various concerns of commercial entities in leveraging
open-source, as well as strategies to mitigate these.

The Importance of Open-Source

6

Why did the commercial
software get a promotion?

Because it knew how to
"package" open-source
code and sell it for a profit!

What is Open Source Software?

7

What is Open Source Software?

8

• Source code availability

• Right to modify and creative derivative works

• (Often) Right to redistribute derivate works

Brief History

9

• Early Days: Roots trace back to the collaborative
nature of software development in the 1950s and
60s.

• GNU Project (1983): Initiated by Richard Stallman to

create a completely free operating system.

• Open Source Initiative (1998): Founded to promote

open source software after Netscape released its
browser source code.

Open Source Vs Free Software

10

Open Source: Focuses on the practical benefits of
sharing code.

Free Software: Emphasizes ethical and moral aspects
of software freedom.

Common Goal: Both aim to empower users and
developers.

Common Misconceptions about Open Source

11

• Quality

• Myth: Lower quality than proprietary

• Reality: Often meets or exceed industry standards

• Support and Maintenance

• Myth: Lack of Professional support

• Reality: Robust support community

• Security

• Myth: Less secure because code is public

• Reality: Transparency allows quicker identification and fixing

Benefits of Open Source Software

12

• For Individuals

• Learning opportunities

• Customization

• Cost Saving

• For Business

• Flexibility

• Security

• Community Support

Open Source Licenses

13

• Copyleft: Requires derivatives to maintain the same
license (e.g., GPL)

• Permissive: Allows proprietary use of modified code
(e.g., MIT, Apache)

GNU General Public License (GPL)

14

Type: Copyleft

Key Terms:

• Any derivative work must be distributed with the

same GPL license.

• The source code must be made available to users,

enabling them to modify and redistribute it.

• Commercial use is allowed, but any distributed

version of the software (including commercial ones)
must adhere to the GPL terms.

MIT License

15

Type: Permissive

Key Terms:

• The software can be used for personal, commercial,

or open-source purposes.

• There’s no requirement to release derivative works as

open source.

• The original copyright notice and license must be

included in all copies or substantial portions of the
software.

• No warranties or liability are provided by the authors
of the software.

Apache License 2.0

16

Type: Permissive with additional patent rights

Key Terms:

• Users can use the software for both open-source and

proprietary purposes.

• The license includes an express grant of patent

rights, ensuring that contributors cannot sue users for
patent infringement related to their contributions.

• Modifications to the original software must be clearly
marked.

• The original copyright notice and license must be
included in any derivative works.

Most popular Software Licenses

17

Which License to Choose?

18

GNU General Public License: the Copyleft License

19

• Nobody should be restricted by the software they
use. There are four freedoms that every user should
have:
● the freedom to use the software for any purpose,
● the freedom to change the software to suit your
needs,
● the freedom to share the software with your friends
and neighbors, and
● the freedom to share the changes you make.

• Code must be made available

• Any modifications must be relicensed under the same
license (copyleft)

Risks of “Copyleft” Licenses

20

• Nobody should be restricted by the software they
use. There are four freedoms that every user should
have:
● the freedom to use the software for any purpose,
● the freedom to change the software to suit your
needs,
● the freedom to share the software with your friends
and neighbors, and
● the freedom to share the changes you make.

• Code must be made available

• Any modifications must be relicensed under the same
license (copyleft)

Lesser GNU Public License (LGPL)

21

• Software must be a library

• Similar to GPL but does not consider dynamic binding
as “derivative work”

• So, proprietary code can depend on LGPL libraries as
long as they are not being modified

• See also: GPL with classpath exception (e.g., Oracle
JDK)

Risk: Incompatible Licenses

22

• Sun open-sourced OpenOffice, but when Sun was
acquired by Oracle, Oracle temporarily stopped the
project.

• Many of the community contributors banded together
and created LibreOffice

• Oracle eventually released OpenOffice to Apache

• LibreOffice changed the project license so LibreOffice
can copy changes from OpenOffice but OpenOffice
cannot do the same due to license conflicts

The Open Source Development Model

23

Collaboration and Community
• Distributed Teams: Developers contribute from around the

world.

• Communication Tools: Use of mailing lists, forums, and

version control systems.

Project Management
• Governance Structures: Maintainers, committers, and

contributors.

• Decision-Making: Often merit-based and consensus-driven.

Contribution Guidelines
• Code of Conduct: Sets expectations for participant behavior.

• Contribution Process: Guidelines for submitting code,

reporting issues, and documentation.

How to Get Involved

24

Contributing to Projects
• Identify Interests: Choose projects aligned with your skills or

passions.

• Start Small: Begin with documentation, bug fixes, or feature

requests.

• Engage with the Community: Participate in discussions and

follow project guidelines.

Starting Your Own Project
• Planning: Define the project's purpose and goals.

• Licensing: Select an appropriate open source license.

• Promotion: Build a community through outreach and collaboration.

Participating in Communities
• Events and Conferences: Attend or speak at open source events.

• Online Platforms: Join forums, mailing lists, and social media

groups.

Resources and Tools

25

Platforms for Collaboration
• GitHub: Hosts repositories and facilitates collaboration.

• GitLab: Provides integrated DevOps lifecycle tools.

• SourceForge: Long-standing platform for open source projects.

Learning Resources
• Documentation: Official project docs, wikis, and READMEs.

• Tutorials and Courses: Online platforms like Coursera, edX,

and freeCodeCamp.

• Community Support: Forums like Stack Overflow and

community chats.

Tools for Development
• Version Control Systems: Git, Mercurial.

• Integrated Development Environments (IDEs): VSCode,

Eclipse.

Successful Open Source Projects

26

Linux Operating System
• Overview: Kernel that forms the basis of various operating

systems.

• Impact: Powers servers, desktops, and mobile devices

(Android).

Apache HTTP Server
• Overview: Widely used web server software.

• Significance: Serves a large portion of the world's websites.

Mozilla Firefox
• Overview: Open source web browser.

• Contribution: Advocates for internet privacy and open

standards.

•

Free Software vs. Open Source

27

Perception (from some):  
• Anarchy

• Demagoguery  
• Ideology 
• Altruism

Open-Source Ecosystems

28

The Cathedral and the Bazaar

29

The Bazaar Won

30

• Developed centrally by a core 
group of members

• Available for all once complete 
(or at releases)

• Examples: GMU Emacs, GCC  
(back in the 1990s)

• “Sort of” examples today: Chrome 
Intellij

• Developed openly and  
organically

• Wide participation (in theory,  
anyone can contribute) 
Examples: Linux

Cathedral Bazaar

OSS has many stakeholders / contributors

31

• Core members
• Often (but not always) includes the original creators
• Direct push access to main repository
• May be further split into admin roles and developers

• External contributors
• File bug reports and report other issues
• Contribute code and documentation via pull requests

• Other supporters
• Beta testers (users)
• Sponsors (financial or platform)
• Steering committees or public commenters (for standards and
RFCs)

• Spin-offs
• Maintainers of forks of the original repository

Governance

32

• Some OSS projects are managed by for-profit firms
• Examples: Chromium (Google), Moby (Docker), Ubuntu (Canonical), TensorFlow
(Google), PyTorch (Meta), Java (Oracle)

• Contributors may be a mix of employees and community volunteers

• Corporations often fund platforms (websites, test servers, deployments, repository
hosting, etc.)

• Corporations usually control long-term vision and feature roadmap

• Many OSS projects are managed by non-profit foundations or ad- hoc communities
• Examples: Apache Hadoop/Spark/Hbase/Kafka/Tomcat (ASF), Firefox (Mozilla),
Python (PSF), NumPy (community)

• Foundations fund project infrastructure via charitable donations

• Long-term vision often developed via a collaborative process (e.g., Apache) or by
benevolent dictators (e.g., Python, Linux)

• Corporations still heavily rely on community-owned OSS projects • Many OSS non-
profits are funded by Big Tech (e.g., Mozilla by Google)

Risks in not Open-Sourcing?

33

Use of Open-Source Software in Companies

34

Software Licenses

35

Note: I am not a lawyer (this is not legal advice)

Copyright vs. Intellectual Property

36

• IP and Patents cover an idea for solving a problem
• Examples: Machine designs, pharma processes to
manufacture certain drugs, (controversially) algorithms
• Have expiry dates. IP can be licensed or sold/
transferred for $$$.

• Copyrights cover particular expressions of some work
• Examples: Books, music, art, source code
• Automatic copyright assignment to all new work
unless a license authorizes alternative uses.

• Exceptions for trivial works and ideas.

Security & Privacy

37

Security & Privacy

38

Computer security refers to the practice of protecting
computer systems and networks from unauthorized
access, theft, damage, or disruption.

Confidentiality: Ensuring that sensitive information is
only accessible to authorized individuals.

Integrity: Safeguarding the accuracy and completeness
of data, preventing unauthorized modifications.

Availability: Ensuring that systems and data are
accessible when needed by authorized users, often
through measures like redundancy, fault tolerance, and
disaster recovery

OWASP Top Ten

39

OWASP - Open Web Application Security Project

- Founded in 2001

- Mission to make the software vulnerability visible

- No profit organization

https://owasp.org/www-project-top-ten/

OWASP Top Ten

40

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery (SSRF)

Broken Access Control

41

Mitigation: Implement strong access controls,
always check user roles and permissions.

Cryptographic Failures

42

Example: An application encrypts credit card numbers
in a database using automatic database encryption.
However, this data is automatically decrypted when
retrieved, allowing a SQL injection flaw to retrieve credit
card numbers in clear text.

Mitigation: Use modern encryption standards like AES
and secure key management.

Injection

43

Insecure Design

44

Example: A cinema chain allows group booking
discounts and has a maximum of fifteen attendees
before requiring a deposit. Attackers could threat
model this flow and test if they could book six hundred
seats and all cinemas at once in a few requests,
causing a massive loss of income.

Mitigation: Include secure design principles like threat
modeling and secure design patterns.

Security Misconfiguration

45

Vulnerable and Outdated Components

46

Description: Using components with known vulnerabilities
can open your application to attack.

Example: An old library with an unpatched security flaw
being exploited by attackers.

Mitigation: Regularly update libraries and third-party
software.

Identification and Authentication
Failures

47

Example: Application session timeouts aren't set
correctly. A user uses a public computer to access an
application. Instead of selecting "logout," the user
simply closes the browser tab and walks away. An
attacker uses the same browser an hour later, and the
user is still authenticated.

Mitigation: Enforce strong password policies,
implement MFA, and secure sessions properly.

Software and Data Integrity Failures

48

Description: Trusting insecure software updates or
using code without verifying integrity.

Example: Compromised CI/CD pipeline delivering
malicious code in a software update.

Mitigation: Implement code signing, secure CI/CD
pipelines, and verify updates.

Security Logging and Monitoring
Failures

49

Description: Insufficient logging and monitoring can
prevent detection of breaches or attacks.

Example: Failing to log suspicious activities like failed
login attempts.

Mitigation: Enable comprehensive logging and actively
monitor for anomalies.

Server-Side Request Forgery (SSRF)

50

Description: SSRF occurs when an attacker tricks the
server into making unintended requests to other
systems.

Example: Exploiting a web application to send
unauthorized requests to internal services.

Mitigation: Validate and sanitize all external requests,
restrict internal server access.

