
CEN 5016:
Software

Engineering

Atish Kumar Dipongkor

University of
Central Florida

Fall 2024

Week 7- Class I:
More LLMs

& Open Source
Software

Administrivia

2

• Assignment 4

• Due Monday, October 7th

• Exploring Static Analysis Tools and CI with a simple Python app

• Accept the Assignment on GitHub Classroom

• SDE Project Part 2

• Due Tuesday, October 15th (updated deadline!)

• Dr. Moran is working on Feedback

• Two parts:

• Process & Implementation Snapshot

• Checkpoint Presentation

A Software Engineer’s Guide to LLMs (continued)

3

Today’s Presentation Overview

4

• Input: Prompt Engineering

• How do LLMs generate Output?

• LLM Evaluation

• Accessing LLM

• Productizing LLM

How LLMs generate Long Responses?

5
Building a Large Language Model - Sebastian Raschka

Input to LLM: Prompt Engineering

6

• Rewording text prompts to achieve desired output. Low-
hanging fruit to improve LLM performance!

• Popular prompt styles:

• Zero-shot: instruction + no examples

• Few-shot: instruction + examples of desired input-output
pairs

• Chain of Thoughts: Breaking down into multiple prompts

Few-shot Prompting

7

Task: Classify the following bug report as either a "Bug" or a "Feature Request."
Few-shot Prompt:
Example 1:

• Bug Report: "The application crashes every time I try to open the settings menu."

• Classification: Bug

Example 2:

• Bug Report: "It would be great if the app supported dark mode for better visibility at night."

• Classification: Feature Request

Example 3:

• Bug Report: "The app doesn't save my preferences after closing it, and I have to set them

again."

• Classification: Bug

Example 4:

• Bug Report: "Can you add a function to export data in CSV format?"

• Classification: Feature Request

New Input:

• Bug Report: "The app freezes when I try to upload a file larger than 10MB."

• Classification: [MODEL OUTPUT: Bug]

Chain of Thought Prompting

8

• Few-shot prompting strategy

• Example responses include reasoning

• Useful for solving more complex word problems [arXiv]

• Example:
Q: A person is traveling at 20 km/hr and reached his
destiny in 2.5 hr then find the distance? Answer
Choices: (a) 53 km (b) 55 km (c) 52 km (d) 60 km (e) 50
km
A: The distance that the person traveled would have
been 20km/hr * 2.5 hrs = 50km
The answer is (e).

http://www.apple.com

Chain of Thought Prompting

9

Problem: A school is organizing a field trip and they need to
arrange transportation for 120 students. They can rent vans
that can hold 12 students each or buses that can hold 40
students each. If the school rents 2 buses, how many vans are
needed to transport the remaining students?

Prompt 1: Restate the problem and break it down.

Response 1: There are 120 students in total, and we are renting 2
buses. Each bus can hold 40 students. We need to find out how
many vans, which can hold 12 students each, are required for the
remaining students

Chain of Thought Prompting

10

Prompt 2: Compute the number of students accommodated
by the buses.
Response 2: Each bus can hold 40 students, and we are renting 2
buses. So, 2 buses can transport 2 × 40 = 80 students.

Prompt 3: Subtract the number of students already
accommodated from the total number of students.

Response 3: We have 120 students, and 80 of them can be transported
by the buses. Therefore, there are 120 - 80 = 40 students remaining.

Prompt 4: Calculate how many vans are required for the remaining
students.
Response 4: Each van can hold 12 students, so we need to divide the
remaining 40 students by 12 to see how many vans are needed. 40 ÷ 12
= 3.33. Since we can't have a fraction of a van, we round up to 4 vans

Fine-Tuning

11

• Retrain part of the LLM with your own data

• Create dataset specific to your task

• Provide input-output examples (>= 100)

• Example:

• I have a online store that sells books

• A Human agent replies all customers’ query

• How can I replace the agent with an LLM?

Information Retrieval and RAG

12

• RAG: Retrieval-Augmented Generation

• Used when you want LLMs to interact with a large
knowledge base (e.g. codebase, company documents)

1. Store chunks of knowledge base in Vector DB
2. Retrieve most “relevant” chunks upon query, add to
prompt

• Pros: Only include most relevant context →
performance, #tokens

• Cons: Integration, Vector DB costs, diminishing returns

Information Retrieval and RAG

13

• 1. Store semantic embeddings of documents

Embeddings Vectors

14

• Embeddings are a representation of text aiming to
capture semantic meaning.

Information Retrieval and RAG

15

• 2. Retrieve most relevant embeddings, combine with
prompt

LLM Evaluation

16

Evaluation: Is the LLM good at our Task?

17

• First, do we have a labeled dataset?

Textual Comparison: Syntactic Checks

18

Textual Comparison: Embeddings

19

• Embeddings are a representation of text aiming to
capture semantic meaning.

Textual Comparison: Cosine Similarity

20

Evaluation

21

• Suppose we don’t have an evaluation dataset.

• What do we care about in our output?

• Example: creative writing

• Lexical Diversity (unique word counts)

• Semantic diversity (pairwise similarity)

• Bias

Evaluation: Test Generation

22

1. Correctness of Test Cases
• Quality: The unit tests should correctly cover the intended functionality of the code,

ensuring that the assertions and logic align with the expected behavior.

• Heuristic:

◦Manual Review: Perform a code review to check if the assertions correctly match the

expected behavior for each function.

◦ Automated Pass/Fail: Run the generated unit tests on a set of known-good code

implementations to see if they pass or fail correctly based on expected outcomes.

2. Code Coverage
• Quality: The generated tests should cover a significant portion of the codebase, including

edge cases and all branches of logic.

• Heuristic:

◦ Code Coverage Tool: Use a tool like pytest-cov or JaCoCo to measure how much of

the code is covered by the generated unit tests. Target a high percentage of branch and
statement coverage.

Accessing LLM

23

• Web Interface

• API

Function Calling

24

• LLM returns sequence of calls to your function
• Supported on GPT-3.5, GPT-4

• 1. List all APIs/functions the LLM has access to.

• Additional prompt to figure out which APIs to use

Function Calling

25

• 1. Specify Available Functions

• Example from OpenAI

Function Calling

26

• 1. Specify Available Functions

• Example from OpenAI

Function Calling

27

• 1. Model Response Contains
Function Calls

• Example from OpenAI

Function Calling

28

Productizing an LLM

29

Estimating Operational Costs

30

• Most LLMs will charge based on prompt length.

• Use these prices together with assumptions about
usage of your application to estimate operating costs.

• Some companies (like OpenAI) quote prices in terms of
tokens - chunks of words that the model operates on.

• GCP Vertex AI Pricing

• OpenAI API Pricing

• Anthropic AI Pricing

https://cloud.google.com/vertex-ai/pricing#generative_ai_models
https://openai.com/pricing
https://www-files.anthropic.com/production/images/model_pricing_july2023.pdf

Optimizing Latency + Speed

31

• Making inferences using LLMs can be slow...

• Strategies to improve performance:

• Caching - store LLM input/output pairs for future use

• Streaming responses - supported by most LLM API
providers. Better UX by streaming
response line by line.

Open Intellectual Property Concerns

32

• Was the data used to train these LLMs obtained
illegally?

• Who owns the IP associated with LLM outputs?

• Should sensitive information be provided as inputs to
LLMs?

Open-Source Software

33

Learning Goals

34

• Distinguish between open-source software, free software, and
commercial software.

• Identify the common types of software licenses and their
implications.

• Distinguish between copyright and intellectual property.

• Express an educated opinion on the philosophical/political debate
between open source and proprietary principles.

• Describe how open-source ecosystems work and evolve, in terms
of maintainers, community contribution, and commercial backing

• Identify various concerns of commercial entities in leveraging
open-source, as well as strategies to mitigate these.

The Importance of Open-Source

35

What is Open Source Software?

36

What is Open Source Software?

37

• Source code availability

• Right to modify and creative derivative works

• (Often) Right to redistribute derivate works

Common Misconceptions about Open Source

38

• Quality

• Myth: Lower quality than proprietary

• Reality: Often meets or exceed industry standards

• Support and Maintenance

• Myth: Lack of Professional support

• Reality: Robust support community

• Security

• Myth: Less secure because code is public

• Reality: Transparency allows quicker identification and fixing

Benefits of Open Source Software

39

• For Individuals

• Learning opportunities

• Customization

• Cost Saving

• For Business

• Flexibility

• Security

• Community Support

Open Source Licenses

40

• Copyleft: Requires derivatives to maintain the same
license (e.g., GPL)

• Permissive: Allows proprietary use of modified code
(e.g., MIT, Apache)

GNU General Public License (GPL)

41

Type: Copyleft

Key Terms:

• Any derivative work must be distributed with the

same GPL license.

• The source code must be made available to users,

enabling them to modify and redistribute it.

• Commercial use is allowed, but any distributed

version of the software (including commercial ones)
must adhere to the GPL terms.

MIT License

42

Type: Permissive

Key Terms:

• The software can be used for personal, commercial,

or open-source purposes.

• There’s no requirement to release derivative works as

open source.

• The original copyright notice and license must be

included in all copies or substantial portions of the
software.

• No warranties or liability are provided by the authors

of the software.

Apache License 2.0

43

Type: Permissive with additional patent rights

Key Terms:

• Users can use the software for both open-source and

proprietary purposes.

• The license includes an express grant of patent

rights, ensuring that contributors cannot sue users for
patent infringement related to their contributions.

•Modifications to the original software must be clearly

marked.

• The original copyright notice and license must be

included in any derivative works.

Contrast with Proprietary Software: A Black Box

44

• Intention is to be used, not examined, inspected, or
modified.

• No source code – only download a binary (e.g., an app)
or use via the internet (e.g., a web service).

• Often contains an End User License Agreement (EULA)
governing rights and liabilities.

• EULAs may specifically prohibit attempts to understand
application internals.

Contrast with Proprietary Software: A Black Box

45

Free Software vs. Open Source

46

• Free software origins (70-80s ~Stallman)
• Cultish Political goal
• Software part of free speech

• free exchange, free modification
• proprietary software is unethical
• security, trust

• GNU project, Linux, GPL license

• Open source (1998 ~O'Reilly)
● Rebranding without political legacy
● Emphasis on internet and large dev/user involvement
● Openness toward proprietary software/coexist
● (Think: Netscape becoming Mozilla)

Free Software vs. Open Source

47

Perception (from some):  
• Anarchy

• Demagoguery  
• Ideology 
• Altruism

Open-Source Ecosystems

48

The Cathedral and the Bazaar

49

The Bazaar Won

50

• Developed centrally by a core 
group of members

• Available for all once complete 
(or at releases)

• Examples: GMU Emacs, GCC  
(back in the 1990s)

• “Sort of” examples today: Chrome 
Intellij

• Developed openly and  
organically

• Wide participation (in theory,  
anyone can contribute) 
Examples: Linux

Cathedral Bazaar

OSS has many stakeholders / contributors

51

• Core members
• Often (but not always) includes the original creators
• Direct push access to main repository
• May be further split into admin roles and developers

• External contributors
• File bug reports and report other issues
• Contribute code and documentation via pull requests

• Other supporters
• Beta testers (users)
• Sponsors (financial or platform)
• Steering committees or public commenters (for standards and
RFCs)

• Spin-offs
• Maintainers of forks of the original repository

Contributing Processes

52

• Mature OSS projects often have strict contribution
guidelines
• Look for CONTRIBUTING.md or similar

• Common requirements:
• Coding style (recall: linters) and passing static checks
• Inclusion of test cases with new code
• Minimum number of code reviews from core devs
• Standards for documentation
• Contributing licensing agreements (more on that later)

Governance

53

• Some OSS projects are managed by for-profit firms
• Examples: Chromium (Google), Moby (Docker), Ubuntu (Canonical), TensorFlow
(Google), PyTorch (Meta), Java (Oracle)

• Contributors may be a mix of employees and community volunteers

• Corporations often fund platforms (websites, test servers, deployments, repository
hosting, etc.)

• Corporations usually control long-term vision and feature roadmap

• Many OSS projects are managed by non-profit foundations or ad- hoc communities
• Examples: Apache Hadoop/Spark/Hbase/Kafka/Tomcat (ASF), Firefox (Mozilla),
Python (PSF), NumPy (community)

• Foundations fund project infrastructure via charitable donations

• Long-term vision often developed via a collaborative process (e.g., Apache) or by
benevolent dictators (e.g., Python, Linux)

• Corporations still heavily rely on community-owned OSS projects • Many OSS non-
profits are funded by Big Tech (e.g., Mozilla by Google)

Example: Apache

54

Corporate Outlook Towards Open-source

55

Risks in not Open-Sourcing?

56

Use of Open-Source Software in Companies

57

• Is the license compatible with our intended use?
• More on this later

• How will we handle versioning and updates?
• Does every internal project declare its own versioned dependency or
do we all agree on using one fixed (e.g., latest) version?
• Sometimes resolved by assigning internal “owners” of a third-party
dependency, who are responsible for testing updates and declaring
allowable versions.

• How to handle customization of the OSS software?
• Internal forks are useful but hard to sync with upstream changes.
• One option: Assign an internal owner who keeps internal fork up-to-
date with upstream.
• Another option: Contribute all customizations back to upstream to
maintain clean dependencies.

• Security risks? Supply chain attacks on the rise.

Use of Open-Source Software in Companies

58

Software Licenses

59

Note: I am not a lawyer (this is not legal advice)

Most popular Software Licenses

60

Which License to Choose?

61

GNU General Public License: the Copyleft License

62

• Nobody should be restricted by the software they
use. There are four freedoms that every user should
have:
● the freedom to use the software for any purpose,
● the freedom to change the software to suit your
needs,
● the freedom to share the software with your friends
and neighbors, and
● the freedom to share the changes you make.

• Code must be made available

• Any modifications must be relicensed under the same
license (copyleft)

Risks of “Copyleft” Licenses

63

• Nobody should be restricted by the software they
use. There are four freedoms that every user should
have:
● the freedom to use the software for any purpose,
● the freedom to change the software to suit your
needs,
● the freedom to share the software with your friends
and neighbors, and
● the freedom to share the changes you make.

• Code must be made available

• Any modifications must be relicensed under the same
license (copyleft)

Lesser GNU Public License (LGPL)

64

• Software must be a library

• Similar to GPL but does not consider dynamic binding
as “derivative work”

• So, proprietary code can depend on LGPL libraries as
long as they are not being modified

• See also: GPL with classpath exception (e.g., Oracle
JDK)

MIT License

65

• Simple, commercial-friendly license

• Must retain copyright credit

• Software is provided as is

• Authors are not liable for software

• No other restrictions

Risk: Incompatible Licenses

66

• Sun open-sourced OpenOffice, but when Sun was
acquired by Oracle, Oracle temporarily stopped the
project.

• Many of the community contributors banded together
and created LibreOffice

• Oracle eventually released OpenOffice to Apache

• LibreOffice changed the project license so LibreOffice
can copy changes from OpenOffice but OpenOffice
cannot do the same due to license conflicts

Copyright vs. Intellectual Property

67

• IP and Patents cover an idea for solving a problem
• Examples: Machine designs, pharma processes to
manufacture certain drugs, (controversially) algorithms
• Have expiry dates. IP can be licensed or sold/
transferred for $$$.

• Copyrights cover particular expressions of some work
• Examples: Books, music, art, source code
• Automatic copyright assignment to all new work
unless a license authorizes alternative uses.

• Exceptions for trivial works and ideas.

Contributor License Agreements (CLA)

68

• Often a requirement to sign these before you can
contribute to OSS projects

• Scoped only to that project

• Assigns the maintainers specific rights over code that
you contribute

• Without this, you own the copyright and IP for even
small bug fixes and that can cause them legal
headaches in the future

Summary

69

• Open-source software harnesses the collective power of
stakeholders not directly associated with main developers

• Open-source ecosystems thrive in many application
domains where reuse is common (e.g., platforms,
frameworks, libraries)

• Corporations rely on open-source even if they develop
proprietary software or services.

• Open-source licenses must be chosen carefully to align
with intended use case.

• You will all contribute to OSS in this class!

