CEN 501 6:

Software
-ngineering

Fall 2024

University of
Central Florida

&

Atish Kumar Dipongkor

Week /- Class I:
More LLMs

& Open Source
Software

&
¥
P
oW




Administrivia (&

e Assignment 4
e Due Monday, October 7th
e Exploring Static Analysis Tools and Cl with a simple Python app
e Accept the Assignment on GitHulb Classroom
e SDE Project Part 2
e Due Tuesday, October 15th (updated deadline!)
e Dr. Moran is working on Feedback
e WO parts:
e Process & Implementation Snapshot

e Checkpoint Presentation




A Software Engineer’'s Guide to LLMs (continued) g&




Today's Presentation Overview &

e [nput: Prompt Engineering

e How do LLMs generate Output?
o [ | M Evaluation

e Accessing LLM

* Productizing LLM




How

Ms generate

ong Responses!

&

Text

sample:

[LLMSJ[Iearn) to predict one word

{LLMS Iearnj[to)predict one word

(LLMs

learn

to](predict} one word

(LLMs

learn

to predict)[one onrd

learn

at

at

at

at

to predict one )[word} at

‘/C(LLMS
Input the (LLMs

learn

a

a

to predict one word](at ]a time

LLM receives

(LLMs

learn

to predict one word at][a Jtime

time
time
The LLM can’t
time access words past
the target.
time
time
Target to
predict

(LLMs

learn

to predict one word at a][time]

Building a Large Language Model - Sebastian Raschka



Input to

M: Prompt

-ngineering

&

® Rewording text prompts to achieve desired output. Low-
hanging fruit to improve LLM performance!

 Popular prompt styles:

® /ero-shot: instruction + no examples

® Few-shot: instruction + examples of desired input-output

nairs

e Chain of Thoughts: Breaking down into multiple prompts




Few-shot Prompting &

Task: Classify the following bug report as either a "Bug" or a "Feature Request."
Few-shot Prompt:

Example 1:

* Bug Report: "The application crashes every time | try to open the settings menu.”
e Classification: Bug
Example 2:

* Bug Report: "It would be great if the app supported dark mode for better visibility at night."
e Classification: Feature Request

Example 3:
* Bug Report: "The app doesn't save my preferences after closing it, and | have to set them
again.”
e Classification: Bug
Example 4:

* Bug Report: "Can you add a function to export data in CSV format?"
e Classification: Feature Request
New Input:

* Bug Report: "The app freezes when | try to upload a file larger than 10MB."
e Classification: [MODEL OUTPUT: Bug]




Chain of Thought Prompting

&

® Few-shot prompting strategy
® Example responses include reasoning

e Useful for solving more complex word problems [arXiv]

® Example:
Q: A person is traveling at 20 km/hr and reached his

destiny in 2.5 hr then find the distance’”? Answer
Choices: (a) 53 km (b) 55 km (c) 52 km (d) 60 km (e) 50
Km

A: The distance that the person traveled would have
been 20km/hr * 2.5 hrs = 50km

The answer is (e).



http://www.apple.com

Chain of Thought Prompting &

Problem: A school is organizing a field trip and they need to
arrange transportation for 120 students. They can rent vans
that can hold 12 students each or buses that can hold 40
students each. If the school rents 2 buses, how many vans are
needed to transport the remaining students?

Prompt 1: Restate the problem and break it down.

Response 1: There are 120 students in total, and we are renting 2
buses. Each bus can hold 40 students. We need to find out how
many vans, which can hold 12 students each, are required for the
remaining students




Chain of Thought Prompting

&

Prompt 2: Compute the number of students accommodated

by the buses.
Response 2: Each bus can hold 40 students, and we are renting 2

buses. So, 2 buses can transport 2 x 40 = 80 students.

Prompt 3: Subtract the number of students already

accommodated from the total number of students.
Response 3: We have 120 students, and 80 of them can be transported

10

by the buses. Therefore, there are 120 - 80 = 40 students remaining.

Prompt 4: Calculate how many vans are required for the remaining
students.

Response 4: Each van can hold 12 students, so we need to divide the
remaining 40 students by 12 to see how many vans are needed. 40 +~ 12
= 3.33. Since we can't have a fraction of a van, we round up to 4 vans



Fine- funing

&

® Retrain part of the LLM with your own data
® Create dataset specific to your task

® Provide input-output examples (>= 100)

® Example:
® | have a online store that sells books
® A Human agent replies all customers’ query

® How can | replace the agent with an LLM?

11



Information Retrieval and RAG

&

® RAG: Retrieval-Augmented Generation

e Used when you want LLLMs to interact with a large
knowledge base (e.g. codebase, company documents)

1. Store chunks of knowledge base in Vector DB
2. Retrieve most “relevant” chunks upon query, add to
prompt

® Pros: Only include most relevant context —
performance, #tokens

® Cons: Integration, Vector DB costs, diminishing returns

12




Information Retrieval and RAG

&

e 1. Store semantic embeddings of documents

Text Corpus

r

embedding
LLM

.

Embedding
Vector

\

— )
Vector

J

DB

\‘/

13




-mbeddings Vectors

&

® Fmbeddings are a representation of text aiming to

capture semantic meaning.

Hey, what’s up?

® @® Hi, how’s it going?

Hello, how are you?

| enjoyed watching
the world cup

| like watching

® |, Adore my dog &
| love mydog @ | love watching soccer @
@
| like my dog soccer matches

14




Information Retrieval and RAG

&

® 2. Retrieve most relevant embeddings, combine with

relevant context

(

prompt
( h
Query
. V.
query most similar
embedding embeddings
A
Vector
DB

e

.

Enhanced
Prompt

~N

V.

f

\.

Template
Prompt

\

y,

15




LM

~valuation

G .

16




“valuation: Is the LLM good at our Task? &

® [irst, do we have a labeled dataset”

(" )
Generated

Output \f N

\. J
LLM Compare

r A

Ground / \- ~

Truth ?

\ J




Textual Comparison: Syntactic Checks &

Exact match?
Contains?
Edit distance?

~ B
Generated
Output 4 A
_ J

LLM Compare

r N\
Ground

Truth
" y

N

\_ Wy,

18



Textual Comparison:

-mbeddings

&

19

capture semantic meaning.

—Mmlbeddings are a representation of text aiming to

©

LLM

r

.

Generated
Output

N

transformer

( )
LLM

.

r

Ground
Truth

~\

transformer

Embedding
- y

" Ground
Truth

L

. Embedding |

Compare




Textual Comparison: Cosine Similarrty

&

- Angle 6 close to © - Angle 6 close to 90 - Angle 6 close to 180
- Cos(B) close to 1 - Cos(B) close to © - Cos(B) close to -1
- Similar vectors - Orthogonal vectors - Opposite vectors

20



~valuation

&

® Suppose we don’t have an evaluation dataset.
e \\Vhat do we care about in our output?
 Example: creative writing

® | exical Diversity (unigue word counts)

e Semantic diversity (pairwise similarity)

® Bias

21




~valuation: Test Generation

&

1. Correctness of Test Cases

e Quality: The unit tests should correctly cover the intended functionality of the code,
ensuring that the assertions and logic align with the expected behavior.
* Heuristic:
o Manual Review: Perform a code review to check if the assertions correctly match the
expected behavior for each function.
o Automated Pass/Fail: Run the generated unit tests on a set of known-good code
implementations to see if they pass or fail correctly based on expected outcomes.
2. Code Coverage

e Quality: The generated tests should cover a significant portion of the codebase, including
edge cases and all branches of logic.
* Heuristic:
o Code Coverage Tool: Use a tool like pytest-cov or JaCoCo to measure how much of
the code is covered by the generated unit tests. Target a high percentage of branch and
statement coverage.

22




e Web Interface

* API

23



Function Calling

&

® | | M returns sequence of calls to your function
e Supported on GPT-3.5, GPT-4

e 1. List all APIs/functions the LLLM has access to.

e Additional prompt to figure out which APIs to use

24




Function Calling

&

® 1. Specify Available Functions

o Example from OpenAl

25




Function Calling

4

® 1, Specify Available Functions

26

—xample from OpenAl

Your code

I_

LLM

1. Your application calls the API with your prompt and
definitions of the functions the LLM can call

2. The model decides whether to respond to the user or
whether one or more functions should be called

3. The APl responds to your application specifying the
function to be called and the arguments to call it with

4. Your application executes the function with the
given arguments

5. Your application calls the API providing your prompt and
the result of the function call your code just executed



Function Calling &

® 1. Model Response Contains
Function Calls

® Example from OpenAl

27




Function Calling

curl https://api.openai.com/vl/chat/completions -u
'model": "gpt-3.5-turbo-0613",

ssages




Productizing an LLM

G .

29




—stimating Operational Costs

&

® Most LLMs will charge based on prompt length.

® Use these prices together with assumptions albout
usage of your application to estimate operating costs.

® Some companies (like OpenAl) quote prices in terms of
tokens - chunks of words that the model operates on.

o GCP Vertex Al Pricing

® OpenAl API Pricing.

e Anthropic Al Pricing.

30



https://cloud.google.com/vertex-ai/pricing#generative_ai_models
https://openai.com/pricing
https://www-files.anthropic.com/production/images/model_pricing_july2023.pdf

Optimizing Latency + Speed

&

® Making inferences using LLMs can be slow...
® Strategies to improve performance:

® Caching - store LLM input/output pairs for future use

® Streaming responses - supported by most LLM AP
providers. Better UX by streaming
response line by line.

31




Open Intellectual Property Concerns

&

32

® \/as the data used to train these LILMs obtained

llegally?

® \\Vho owns the |IP associated with LLM outputs?

e Should sensitive information be provided as inputs to

LLMs?

Al art tools Stable Diffusion and

Midjourney targeted with copyright
lawsuit

tools violate copyright law by
2 s # scraping artists’ work from the
& ‘ web without their consent.

'}/ The suit claims generative Al art
%

xxxxxxxxxxxxxxxxxxxxxxxxxxx

The lawsuit that could rewrite the rules
of Al copyright

/ Microsoft, GitHub, and OpenAl
are being sued for allegedly
violating copyright law by
reproducing open-source code
using Al. But the suit could have
a huge impact on the wider world
of artificial intelligence.

via ChatGPT

ChatGPT doesn't keep secrets.

Whoops, Samsung workers accidentally leaked trade secrets




Open-Source Software

G .

33




earning Goals &

34

® Distinguish between open-source software, free software, and

commercial software.

® |dentify the common types of software licenses and their

implications.

® Distinguish between copyright and intellectual property.

® Express an educated opinion on the philosophical/political debate

between open source and proprietary principles.

® Describe how open-source ecosystems work and evolve, In terms

of maintainers, community contribution, and commercial backing

® |dentify various concerns of commercial entities in leveraging

open-source, as well as strategies to mitigate these.



The Importance of Open-Source

&

ALL MODERN DIGITAL
INFRASTRUCTURE

A

4 N
A PROJECT SOME
RANDOM PERSON

n
IN NEBRASKA HAS

! » BEEN THANKLESSLY
MAINTAINING
SINCE 2003

[1;__3\ J

35




What 1s Open Source Software!?

Open-source

36

Proprietary

r@ Uber

ml J TikTok
ol
NETFLIX




What is Open Source Software? &

® Source code availability
e Right to modify and creative derivative works

e (Often) Right to redistribute derivate works

37



Common Misconceptions about Open Source

* Quality

e Myth: Lower quality than proprietary

® Reality: Often meets or exceed industry standards
 Support and Maintenance

e Myth: Lack of Professional support

e Reality: Robust support community
« Security

® Myth: Less secure because code Is public

® Reality: Transparency allows quicker identification and fixing

38



Benefits of Open Source Software

&

* For Individuals
® | earning opportunities
® Customization
e Cost Saving
* For Business
® Fexibility
® Security

e Community Support

39




Open Source Licenses

&

* Copyleft: Requires derivatives to maintain the same
license (e.q., GPL)

 Permissive: Allows proprietary use of modified code
(e.g., MIT, Apache)

40




GNU General Public

icense (GP

&

Type: Copyleft

Key Terms:

e Any derivative work must be distributed with the

same GPL license.

* The source code must be made available to users,
enabling them to modify and redistribute it.

e Commercial use is allowed, but any distributed
version of the software (including commercial ones)

must adhere to the GPL terms.

41



MIT License

&

Type: Permissive

Key Terms:

* The software can be used for personal, commercial,
OF OPEN-SOUrCce PUrposes.

e There’s no requirement to release derivative works as
Open source.

* The original copyright notice and license must be
included in all copies or substantial portions of the
software.

* No warranties or liability are provided by the authors
of the software.

42




Apache License 2.0 &

43

Type: Permissive with additional patent rights

Key Terms:

e Users can use the software for both open-source and
proprietary purposes.

* The license includes an express grant of patent
rights, ensuring that contributors cannot sue users for
patent infringement related to their contributions.

* Modifications to the original software must be clearly
marked.

* The original copyright notice and license must be
included Iin any derivative works.



Contrast with Proprietary Software: A Black Box

® |ntention is to be used, not examined, inspected, or
modified.

® No source code — only download a binary (e.g., an app)
or use via the internet (e.g., a web service).

e Often contains an End User License Agreement (EULA)
governing rights and liablilities.

o FULASs may specifically prohibit attempts to understand
application internals.

44



Contrast with Proprietary Software: A Black Box (&

45

@4 865%

n End User License Agreement

1. Grant of License

The Licensor hereby grants you limited,
personal, non-exclusive, non-transferable,
revocable license to install the Application on
your mobile device for your personal use. You
may not (and shall not permit or assist any third
party to): (i) copy (except as expressly permitted
by this License), decompile, reverse engineer,
disassemble, attempt to derive the source code,
modify, or create derivative works of the
Application, any updates, or any part thereof; (ii)
rent, lease, lend, sell, redistribute or sublicense
the Application; (iii) use the application in any
manner that could damage, disable, overburden,
or impair the Application (or any server or
networks connected to the Application) or
interfere with any third party’s use and/or
enjoyment of the Application (or any server or
networks connected to the Application); (iv)
intentionality interfere with or circumvent the
Application’s security features; (v) use, test or
otherwise utilize the Application in any manner
for purposes of developing or implementing any
method or software that is intended to monitor
or interfere (including intercept or capture data)
with the functioning of the Application (or any
server or networks connected to the
Application); or (vi) otherwise use the
Application in any unlawful manner, for any
unlawful purpose or in any other manner not
expressly granted in this License. The terms of
this License will govern any updates provided by
the Licensor that replace and/or supplement the
original Application.

Any open source software that may be

e e el R -

Decline Accept

¥4 6 65%

n End User License Agreement

Any open source software that may be
accompanying the Application is provided to
you under the terms of such open source
license agreement. This License does not apply
to any such open source software
accompanying the Application, except as
expressly stated herein.

2. Ownership

The software, content, visual interfaces,
interactive features, information, graphics,
design, compilation, computer code and all
other elements of the Applications (the
“Materials”) are protected by intellectual
property rights—including copyright, trade dress,
patent, trade secret and trademark laws of the
United States, other jurisdictions, and
international conventions, and all other
applicable laws (collectively, “Applicable
Intellectual Property Laws”). All Materials are
the property of the Licensor or its subsidiaries
or affiliated companies and/or third-party
licensors. The Licensor reserves all rights not
expressly granted in this License. You shall not
acquire any right, title or interest to the
Materials, whether by implication, estoppel, or
otherwise, except for the limited rights set forth
in this License. You hereby agree to abide by all
Applicable Intellectual Property Laws.

3. Privacy and Consent to Use of Data

You agree that the Licensor, its affiliates, and
their corresponding service providers may
collect, maintain, and use technical data and
related information about you and your device

Decline Accept




Free Software vs. Open Source

&

® [ree

software origins (70-80s ~Stallman)

® Cuftsh Political goal

® SO

tware part of free speech

® free exchange, free modification
® proprietary software is unethical
® security, trust

® GNU project, Linux, GPL license

® Open source (1998 ~O'Reilly)

® Re

branding without political legacy

e Emphasis on internet and large dev/user involvement
e Openness toward proprietary software/coexist

46

e (Think: Netscape becoming Mozilla)



Free Software vs. Open Source

&

Perception (from some):
* Anarchy
- Demagoguery
* ldeology
* Altruism

A REMINDER
from
YOUR FRIENDS AT MICROSOFT

47




Open-Source

~COSystems

G .

48




The Cathedral and the Bazaar

&

49

“Lor ot "- wian? bood .J~'-4.‘ W .-:-L'.f. '.:.T' M ¢
sredd daplic atiowny 2hat po far beyound progravwing.”
- Gy haweorak ) ‘%

MUSINGS ON LINUX AND OPEN SOURCE
BY AN ACCIDENTAL REVOLUTIOHARY

ERIC S, RAYMOND

WITH A FOREWORD BY 598 YOUNE, CHARMAN & CEO OF RED HAT, ISC.




The Bazaar VWon

&

Cathedral

* Developed centrally by a core
group of members

* Available for all once complete
(or at releases)

 Examples: GMU Emacs, GCC
(back in the 1990s)

e “Sort of” examples today: Chrome
Intelli]

50

Bazaar

* Developed openly and

organically

« Wide participation (in theory,

anyone can contribute)
Examples: Linux



OSS has many stakeholders / contributors

&

51

e Core members
e Often (but not always) includes the original creators
e Direct push access to main repository
e May be further split into admin roles and developers

e External contributors
® Hle bug reports and report other issues
e Contribute code and documentation via pull requests

® Other supporters
e Beta testers (users)
e Sponsors (financial or platform)
e Steering committees or public commenters (for standards and
RFCs)

® Spin-offs
e Maintainers of forks of the original repository



Contributing Processes &

o Mature OSS projects often have strict contribution
guidelines
e | ook for CONTRIBUTING.md or similar

e Common requirements:
e Coding style (recall: linters) and passing static checks
¢ [nclusion of test cases with new code
o Minimum number of code reviews from core devs
e Standards for documentation
e Contributing licensing agreements (more on that later)

52



Governance

&

® Some OSS projects are managed by for-profit firms
e Examples: Chromium (Google), Moby (Docker), Ubuntu (Canonical), TensorFlow
(Google), PyTorch (Meta), Java (Oracle)

e Contributors may be a mix of employees and community volunteers

e Corporations often fund platforms (websites, test servers, deployments, repository
hosting, etc.)

e Corporations usually control long-term vision and feature roadmap

® Many OSS projects are managed by non-profit foundations or ad- hoc communities
e Examples: Apache Hadoop/Spark/Hbase/Kaftka/Tomcat (ASF), Firefox (Mozilla),
Python (PSF), NumPy (community)

® Foundations fund project infrastructure via charitable donations

® | ong-term vision often developed via a collaborative process (e.g., Apache) or by
benevolent dictators (e.g., Python, Linux)

e Corporations still heavily rely on community-owned OSS projects ® Many OSS non-

profits are funded by Big Tech (e.g., Mozilla by Google)

53



-xample: Apache

S

WHAT MAKES THE APACHE WAY SO HARD TO DEFINE?

The Apache Way is a living, breathing interpretation of one's experience with our community-led development process. Apad
unique, diverse, and focused on the activities needed at a particular stage of the project's lifetime, including nurturing comn
building awareness. What is important is that they embrace:

¢ Earned Authority: all individuals are given the opportunity to participate, but their influence is based on publicly earne
community. Merit lies with the individual, does not expire, is not influenced by employment status or employer, and is 1
project cannot be applied to another). More on merit.

¢ Community of Peers: individuals participate at the ASF, not organizations. The ASF's flat structure dictates that roles ar
equal weight, and contributions are made on a volunteer basis (even if paid to work on Apache code). The Apache com
with respect in adherence to our Code of Conduct. Domain expertise is appreciated; Benevolent Dictators For Life are d
participation.

¢ Open Communications: as a virtual organization, the ASF requires all communications related to code and decision-mj
asynchronous collaboration, as necessitated by a globally-distributed community. Project mailing lists are archived, pul]

o dev@ (primary project development)

o user@ (user community discussion and peer support)

o commits@ (automated source change notifications)

o occasionally supporting roles such as marketing@ (project visibility)

..as well as restricted, day-to-day operational lists for Project Management Committees. Private decisions on code, policies, or
discourse and transactions must be brought on-list. More on communications and the use of mailing lists.

» Consensus Decision Making: Apache Projects are overseen by a self-selected team of active volunteers who are contri
Projects are auto-governing with a heavy slant towards driving consensus to maintain momentum and productivity. W|
establish at all times, holding a vote or other coordination may be required to help remove any blocks with binding ded
More on decision making and voting.

* Responsible Oversight: The ASF governance model is based on trust and delegated oversight. Rather than detailed ru
governance is principles-based, with self-governing projects providing reports directly to the Board. Apache Committe
reviewed commits, employing mandatory security measures, ensuring license compliance, and protecting the Apache
abuse. More on responsibility.

54

# APACHE

OUR SPONSORS

Apache Software Foundation could not exist without the cont

pportunity to thank our sponsors. If you are interested in sg ng the ASF, please read our SRONSOISHIR PAAK

FOUNDATION SPONSORS

Platinum Sponsors:

Faceeook yahooZ

:#525: \\"/l
R~ w W
Pineapple Fund HUAWEI

Pineapple Fund Huawei

dWS == Microsoft

Amazon Web Services Microsoft

Google




Corporate Outlook Towards Open-source &

e
February 3, 1976

An Open Letter to Hobbyists

To me, the most critical thing in the hobby market right now

Red dt S Nadella: 'Microsoft
eamona top man osatya .

is the lack of good software courses, books and software itself. e

Without good software and an owner who understands programming, a L

hobby computer is wasted. Will guality software be written for the Inux

hobby market?

Almost a year ago, Paul Allen and myself, expecting the hobby ' ' .
ket t d, hired Monte Davidoff and developed Altai 1Ic. o - I f 'y th t I d t
g, G TASE15% yoms ol by s momthe LI Thian o8 ma Beve pen-source love iairly runnetn over at cloud even
spent most of the last year documenting, improving and adding fea-

tures to BASIC. Now we have 4K, 8K, EXTENDED, ROM and DISK BASIC,
The value of the computer time we have used exceeds $40,000.

The feedback we have gotten from the hundreds of people who
say they are using BASIC has all been positive. Two surprising
things are apparent, however. 1) Most of these "users" never bought
BASIC (less than 10% of all Altair owncrs have bought BASIC), and
2) The amount of royalties we have received from sales to hobbyists

“...most of you steal your software...”

Is this fair? One thing you don't do by stealing software is
get back at MITS for some problem you may have had. MITS doesn't
make money selling software. The. royalty paid to us, the manual,
the tape and the overhead make it a break-even operation. One thing
you do do is prevent good software from being written. Wwho can af-
ford to do professional work for nothing? What hobbyist can put
3-man years into programming, finding all bugs, documenting his pro-
duct and distribute for free? The fact is, no one besides us has
invested a lot of money in hobby software. We have written 6800
BASIC, and are writing 8080 APL and 6800 APL, but there is very lit-
tle incentive to make this software available to hobbyists. Most
directly, the thing you do is theft.

What about the guys who re-sell Altair BASIC, aren't they mak-
ing money on hobby software? Yes, but those who have been reported
to us may lose in the end. They are the ones who give hobbyists a
bad name, and should be kicked out of any club meeting they show up
at.

has a ggestion or Just write me at 1180 Alvarado SE, #114,
Albuquerque, New Mexico, B7108. Nothing would please me more than
being able to hire ten programmers and deluge the hobby market with

i i 5/«(1/ /JJE 20 Oct 2014 at 23:45, Neil McAllister @) O 0 @

Bill Gates
General Partner, Micro-soft

I would appreciate letters from any one who wants to pay up, or @




Risks in not Open-Sourcing?

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram'’s execution across a set of machines, handling ma-

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp

56




Use of Open-Source Software in Companies

S7

® |s the license compatible with our intended use”?

e More on this later

How will we handle versioning and updates”?

e Does every internal project declare its own versioned dependency or
do we all agree on using one fixed (e.g., latest) version?

e Sometimes resolved by assigning internal “owners” of a third-party
dependency, who are responsible for testing updates and declaring
allowable versions.

How to handle customization of the OSS software?

¢ [nternal forks are useful but hard to sync with upstream changes.

e One option: Assign an internal owner who keeps internal fork up-to-
date with upstream.

e Another option: Contribute all customizations back to upstream to
Mmaintain clean dependencies.

® Security risks? Supply chain attacks on the rise.



Use of Open-Source Software in Companies

ALL MODERN DIGITAL
INFRASTRUCTURE
A
( )
it :
0
m A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS
L ) BEEN THANKLESSLY
MAINTAINING
SINCE 2003
L
=

58

QUARTZ Make business better.™ 0O a Sendus aTip! m L =

TECH & INNOVATION
NPM ERR

How one programmer broke the
internet by deleting a tiny piece of
code

1 module.exports leftpad;
2+ function leftpad (str, len, ch) {
str = String(str):
var i -1;
('ch ch @) ch
len len str.length;
(++1 len) {
str ch Str;

11}

SRS




Software Licenses

G .

Note: | am not a lawyer (this is not legal advice)

59




Most popular Software Licenses

&

Most popular open source licenses worldwide in 2021
*
Apach 34.1%
i
MIT
o
GPL 3.0
<
GPL 2.0 .
BSD 3
=
LGPL 2.1
BSD 2
Microsoft Public
O Statista 2023 &
© Additional Information Show source @

60




Which

icense to Choose!

61

C O @ choosealicense.com

)
X
B2
»
@
(o)
¥

Choose an open source license

An open source license protects contributors and users. Businesses and savvy developers won't touch a project without this protection.

Which of the following best describes your situation?

azh

Ineedtoworkina
community.

I want it simple and
permissive.

Use the license preferred by the
community you're contributing to or
depending on. Your project will fit right in.

The MIT License is short and to the point. It
lets people do almost anything they want
with your project, like making and

distributing closed source versions.
If you have a dependency that doesn't have

I care about sharing
improvements.

The GNU GPLv3 also lets people do almost
anything they want with your project, except
distributing closed source versions.

Ansible, Bash, and GIMP use the GNU

a license, ask its maintainers to add a Babel, .NET, and Rails use the MIT License. GPLv3.
license.
What if none of these work for me?
My projectisn’t Iwant more Idon’t want to
software. choices. choose a license.

There are licenses for that. More licenses are available.

Here's what happens If you don’t




GNU General Public License: the Copyleft License

62

® Nobody should be restricted by the software they
use. There are four freedoms that every user should
have:
® the freedom to use the software for any purpose,
® the freedom to change the software to suit your
needs,
® the freedom to share the software with your friends
and neighbors, and
® the freedom to share the changes you make.

e Code must be made available

* Any modifications must be relicensed under the same
license (copyleft)



Risks of “Copyleft” Licenses &

63

® Nobody should be restricted by the software they
use. There are four freedoms that every user should
have:
® the freedom to use the software for any purpose,
® the freedom to change the software to suit your
needs,
® the freedom to share the software with your friends
and neighbors, and
® the freedom to share the changes you make.

e Code must be made available

* Any modifications must be relicensed under the same
license (copyleft)



esser GNU Public

icense (

GP

&

64

® Software must be a library

e Similar to GPL but does not consider dynamic binding

as “derivative work”

® S0, proprietary code can depend on LGPL libraries as
long as they are not being modified

® See also: GPL with classpath exception (e.g., Oracle

JDK)



MIT License (¢

e Simple, commercial-friendly license
® Must retain copyright credit

® Software Is provided as Is

® Authors are not liable for software

® NoO other restrictions

65



Risk: Inco

mpatible Licenses

&

® Sun open-sourced OpenOffice, but when Sun was
acquired by Oracle, Oracle temporarily stopped the

project

e Many of the community contributors banded together
and created LibreOffice

® Oracle

® | breO
can co
cannot

66

eventually released OpenOffice to Apache

fice changed the project license so LibreOffice

oy changes from OpenOffice but OpenOffice
do the same due to license conflicts



Copyright vs. Intellectual Property

&

® |P and Patents cover an idea for solving a problem

—xamples: Machine designs, pharma processes to

manufacture certain drugs, (controversially) algorithms
e Have expiry dates. IP can be licensed or sold/
transferred for $$5.

e Copyrights cover particular expressions of some work

—xamples: Books, music, art, source code

o Automatic copyright assignment to all new work
unless a license authorizes alternative uses.

® Exceptions for trivial works and ideas.

67



Contributor

icense Agreements (C

A)

&

e Often a requirement to sign these before you can

contribute to OSS projects

® Scoped only to that project

® Assigns the maintainers specific rights over code that

you contribute

e \\Vithout this, you own the copyright and IP for even
small bug fixes and that can cause them legal

headaches In the future

68



Summary (¢

® Open-source software harnesses the collective power of
stakeholders not directly associated with main developers

® Open-source ecosystems thrive in many application
domains where reuse is common (e.g., platforms,
frameworks, libraries)

® Corporations rely on open-source even if they develop
proprietary software or services.

® Open-source licenses must be chosen carefully to align
with intended use case.

® You will all contribute to OSS In this class!

69



