
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Fall 2024

Week 5 - Class 1I:
Static & Dynamic

Analysis

Administrivia

2

• Assignment 2 Due Tomorrow

• SDE Project Part 1

• Due Tues, Sept 24th

• Get started now!!

• Assignment 3

• Will be posted tomorrow

• Web App Deployment

Intro to Software Architecture

3

Why Document Architecture?

4

• Blueprint for the system
• Artifact for early analysis
• Primary carrier of quality attributes
• Key to post-deployment maintenance and enhancement

• Documentation speaks for the architect, today and 20
years from today

• As long as the system is built, maintained, and evolved
according to its documented architecture

• Support traceability.

Views & Purposes

5

• Every view should align with a purpose

• • Views should only represent information relevant to that purpose

• Abstract away other details

• Annotate view to guide understanding where needed

• • Different views are suitable for different reasoning aspects (different quality
goals), e.g.,

• Performance

• Extensibility

• Security

• Scalability

• ...

Common Views in Documenting Software Architecture

6

• Static View

• Modules (subsystems, structures) and their relations
(dependencies, ...)

• Dynamic View

• Components (processes, runnable entities) and
connectors (messages, data flow, ...)

• Physical View (Deployment)

• Hardware structures and their connections

Common Software Architectures

7

1. Pipes & Filters

8

Pipes & Filters Example: Compilers

9

2. Object Oriented Organization

10

3. Event-Driven Architecture

11

Example: HTML DOM + Javascript

12

4. Blackboard Architecture

13

5. Layered Systems

14

Example Internet Protocol Suite

15

Example Internet Protocol Suite

16

Software QA: Static & Dynamic Analysis

17

Learning Goals

18

• Gain an understanding of the relative strengths and
weaknesses of static and dynamic analysis

• Examine several popular analysis tools and understand
their use cases

• Understand how analysis tools are used in large open-
source software

Activity: Analyze the Python Program Statically

19

def n2s(n: int, b: int) -> str:
 if n <= 0:
 return '0'
 r = ''
 while n > 0:
 u = n % b
 if u >= 10:
 u = chr(ord('A') + u - 10)
 n = n // b
 r = str(u) + r
 return r

1. What are the set of data types taken
by variable `u` at any point in the
program?

2. Can the variable `u` be a negative
number?

3. Will this function always return a
value?

4. Can there ever be a division by zero?

5. Will the returned value ever contain a
minus sign ‘-’?

Answer: Yes, No, Maybe

What Static Analysis Can & Cannot Do

20

• Type-checking is well established

• Set of data types taken by variables at any point

• Can be used to prevent type errors (e.g. Java) or warn about potential type errors (e.g.
Python)

• Checking for problematic patterns in syntax is easy and fast

• Is there a comparison of two Java strings using `==`?

• Is there an array access `a[i]` without an enclosing bounds check for `i`?

• Reasoning about termination is impossible in general

• Halting problem

• Reasoning about exact values is hard, but conservative analysis via abstraction is possible

• Is the bounds check before `a[i]` guaranteeing that `I` is within bounds?

• Can the divisor ever take on a zero value?

• Could the result of a function call be `42`?

• Will this multi-threaded program give me a deterministic result?

• Be prepared for “MAYBE”

• Verifying some advanced properties is possible but expensive

• CI-based static analysis usually over-approximates conservatively

Bad News: Rice’s Theorem

21

• Every static analysis is necessarily incomplete,
unsound, undecidable, or a combination thereof

• “Any nontrivial property about the language recognized
by a Turing machine is undecidable.”

• Henry Gordon Rice, 1953

Static Analysis is Well-Suited to Detecting Certain Defects

22

• Security: Buffer overruns, improperly validated input...

• Memory safety: Null dereference, uninitialized data...

• Resource leaks: Memory, OS resources...

• API Protocols: Device drivers; real time libraries; GUI frameworks

• Exceptions: Arithmetic/library/user-defined

• Encapsulation:
• Accessing internal data, calling private functions...

• Data races:
• Two threads access the same data without synchronization

Static Analysis Tools: Broad Classification

23

• Linters
• Shallow syntax analysis for enforcing code styles and formatting

• Pattern-based bug detectors
• Simple syntax or API-based rules for identifying common
programming mistakes

• Type-annotation validators
• Check conformance to user-defined types
• Types can be complex (e.g., “Nullable”)

• Data-flow analysis / Abstract interpretation)
• Deep program analysis to find complex error conditions (e.g., ”
can array index be out of bounds?”)

Static Analysis Tools: Applications

24

• Find bugs

• Refactor code

• Keep your code stylish!

• Identify code smells

• Measure quality

• Find usability and accessibility issues

• Identify bottlenecks and improve performance

Activity: Analyze the Python Program Dynamically

25

def n2s(n: int, b: int) -> str:
 if n <= 0:
 return '0'
 r = ''
 while n > 0:
 u = n % b
 if u >= 10:
 u = chr(ord('A') + u - 10)
 n = n // b
 r = str(u) + r
 return r
print(n2s(12,	10))	

1. What are the set of data
types taken by variable `u` at
any point in the program?

2. Did the variable `u` ever
contain a negative number?

3. For how many loop
executions did the while loop
execute?

4. Was there a division by zero?

5. Did the returned value ever
contain a minus sign ‘-’?

Answer: Yes, No, Maybe

Dynamic Analysis Reasons about Program Executions

26

• Tells you properties of the program that were definitely
observed

• Code coverage

• Performance profiling

• Type profiling

• Testing

• In practice, implemented by program instrumentation

• Think “Automated logging”

• Slows down execution speed by a small amount

Static Analysis vs. Dynamic Analysis

27

• Requires only source code

• Conservatively reasons
about all possible

• Reported warnings may
contain false positives

• Can report all warnings of a
particular class of problems

• Advanced techniques like
verification can prove certain
complex properties, but
rarely run in CI due to cost

• Requires successful build + test
inputs

• Observes individual executions

• Reported problems are real, as
observed by a witness input

• Can only report problems that
are seen. Highly dependent on
test inputs. Subject to false
negatives

• Advanced techniques like
symbolic execution can prove
certain complex properties, but
rarely run in CI due to cost

Static Analysis

28

Tools for Static Analysis

29

Static Analysis is a Key Part of CI

30

Static Analysis used to be Purely Academic…

31

Static Analysis is Also Integrated into IDEs

32

What Makes a Good Static Analysis Tool?

33

• Static analysis should be fast

• Don’t hold up development velocity

• This becomes more important as code scales

• Static analysis should report few false positives

• Otherwise developers will start to ignore warnings and alerts, and quality will decline

• Static analysis should be continuous

• Should be part of your continuous integration pipeline

• Diff-based analysis is even better -- don’t analyse the entire codebase; just the
changes

• Static analysis should be informative

• Messages that help the developer to quickly locate and address the issue

• Ideally, it should suggest or automatically apply fixes

(1) Linters

34

• Cheap, fast, and lightweight static source analysis

Use Linters to Enforce Style Guidelines

35

• Don’t rely on manual inspection during code review!

Linters Use Very “Shallow” Static Analysis

36

• Ensure proper indentation

• Naming convention

• Line sizes

• Class nesting

• Documenting public functions

• Parenthesis around expressions

• What else?

Use Linters to Improve Maintainability

37

• Why? We spend more time reading code than writing it.

• Various estimates of the exact %, some as high as
80%

• Code is ownership is usually shared

• The original owner of some code may move on

• Code conventions make it easier for other developers to
quickly understand your code

UseStyle Guidelines to Facilitate Communication

38

• Guidelines are inherently opinionated, but consistency is
the important point. Agree to a set of conventions and
stick to them.

Take Home Message: Style is an Easy Way to
Improve Readability!

39

• Everyone has their own opinion (e.g., tabs vs. spaces)

• Agree to a convention and stick to it

• Use continuous integration to enforce it

• Use automated tools to fix issues in existing code

(2) - Pattern-based Static Analysis Tools

40

• Bad Practice

• Correctness

• Performance

• Internationalization

• Malicious Code

• Multithreaded Correctness

• Security

• Dodgy Code

SpotBugs can be Extended with Plugins

41

Challenges

42

• The analysis must produce zero false positives
• Otherwise developers won’t be able to build the code!

• The analysis needs to be really fast
• Ideally < 100 ms
• If it takes longer, developers will become irritated and
lose productivity

• You can’t just “turn on” a particular check
• Every instance where that check fails will prevent
existing code from
• There could be thousands of violations for a single
check across large codebases

(3) -Use Type Annotations to Detect Common Errors

43

• Uses a conservative analysis to prove the absence of certain
defects

• Null pointer errors, uninitialized fields, certain liveness
issues, information leaks, SQL injections, bad regular
expressions, incorrect physical units, bad format strings, ...

• C.f. SpotBugs which makes no safety guarantees

• Assuming that code is annotated and those annotations
are correct

• Uses annotations to enhance type system

• Example: Java Checker Framework or MyPy

(3) -Use Type Annotations to Detect Common Errors

44

• Uses a conservative analysis to prove the absence of certain
defects

• Null pointer errors, uninitialized fields, certain liveness
issues, information leaks, SQL injections, bad regular
expressions, incorrect physical units, bad format strings, ...

• C.f. SpotBugs which makes no safety guarantees

• Assuming that code is annotated and those annotations
are correct

• Uses annotations to enhance type system

• Example: Java Checker Framework or MyPy

Taint Analysis

45

• Tracks flow of sensitive information through the program

• Tainted inputs come from arbitrary, possibly malicious
sources
• User inputs, unvalidated data

• Using tainted inputs may have dangerous
consequences
• Program crash, data corruption, leak private data, etc.

• We need to check that inputs are sanitized before
reaching sensitive locations

Classic Example: SQL Injection

46

Classic Example: SQL Injection

47

void	processRequest()	{	
String	input	=	getUserInput();	
String	query	=	"SELECT	...	"	+	input;	
executeQuery(query);	

}	

Classic Example: SQL Injection

48

void	processRequest()	{	
String	input	=	getUserInput();	
String	query	=	"SELECT	...	"	+	input;	
executeQuery(query);	

}	

Tainted input arrives from untrusted source

Tainted output flows to a sensitive sink

Classic Example: SQL Injection

49

void	processRequest()	{	
String	input	=	getUserInput();		

input	=	saniIzeInput(input);

String	query	=	"SELECT	...	"	+	input;	
executeQuery(query);	

}	

Taint is removed by sanitizing data

We can now safely execute query on untainted data

Unit Catastrophe

50

Units Checker Identifies Physical Unit Inconsistencies

51

• Guarantees that operations are performed on the same
kinds and units

• Kinds of annotations
• @Acceleration, @Angle, @Area, @Current, @Length,
@Luminance, @Mass, @Speed, @Substance,
@Temperature, @Time

• SI unit annotation
• @m, @km, @mm, @kg, @mPERs, @mPERs2,
@radians, @degrees, @A, ...

Checker Frameworks: Limitations

52

• Can only analyze code that is annotated
• Requires that dependent libraries are also annotated
• Can be tricky, but not impossible, to retrofit annotations
into existing codebases

• Only considers the signature and annotations of methods
• Doesn’t look at the implementation of methods that are
being called

• Dynamically generated code
• Spring Framework

• • Can produce false positives!
• Byproduct of necessary approximations

Infer : What if we didn’t want Annotations

53

• Focused on memory safety bugs
• Null pointer dereferences, memory leaks, resource
leaks, ...

• Compositional interprocedural reasoning
• Based on separation logic and bi-abduction

• Scalable and fast
• Can run incremental analysis on changed code

• Does not require annotations

• Supports multiple languages
• Java, C, C++, Objective-C
• Programs are compiled to an intermediate
representation

Infer : What if we didn’t want Annotations

54

Infer : What if we didn’t want Annotations

55

Beware of Inevitable False Positives

56

The Best QA Strategies use Multiple Tools

57

Dynamic Analysis

58

Android Memory Profiler

59

https://developer.android.com/studio/profile/memory-profiler

Pycharm Debugger

60 https://www.jetbrains.com/help/pycharm/debugging-your-first-python-application.html#where-is-the-problem

Valgrind Dynamic Analysis Library

61 https://valgrind.org/

Summary

62

• Linters are cheap, fast, but imprecise analysis tools
• Can be used for purposes other than bug detection (e.g.,
style)

• Conservative analyzers can demonstrate the absence of
particular defects
• At the cost of false positives due to necessary
approximations
• Inevitable trade-off between false positives and false
negatives

• The best QA strategy involves multiple analysis and testing
techniques
• The exact set of tools and techniques depends on context

