
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Fall 2024

Week 4 - Class 1:
Software Testing

Administrivia

2

• Team-forming due by Thursday!

• If you are not on a team, let me know and I can try to
help

• Assignment 2 (Almost) Posted

• I promise it will be worth it 😅

• Getting familiar with FakeFlix, the subject of our SDE
project

• Due dates will be adjusted accordingly

• I will be posting resources related to Javascript and
React from my past classes to assist.

Software Teams & Communication

3

Establish a Collaboration Process

4

Communication App Confusion

5

Select the Right Communication Tools

6

Establish Communication Patterns

7

• Asana, Trello, Microsoft Projects, …

• Github Wiki, Google Docs, Notion, ...

• Github Issues, Jira, …

• Email, Slack, Facebook groups, …

• Zoom, Microsoft Teams, Skype, Phone call, ...

• Face-to-face meetings

CEN 5016 Communication Channels

8

• Ed Discussions

• Regular meeting (Lectures, Recitations)

• Office Hours

• Webcourses

• Course Webpage

Check Out Other Projects

9

Communication Expectation

10

• Quality of service guarantee

• How soon will you get back to your teammates?

• Weekend? Evening?

• Emergency

• Tag w/ 911

• Notify everyone with @channel

Running a Meeting

11

How to Run a Meeting

12

• The Three Rules of Running a Meeting

• Set the Agenda

• Start on Time. End on Time.

• End with Action Items (and share them - Github Issues,
Meeting Notes, ...)

How to Run a Meeting

13

• Set and document clear responsibilities and expectations

• Make everyone contribute

• Possible Roles: Coordinator, Scribe, Checker

• Manage Personalities

• Be Vulnerable

Atlassian Meeting Flowchart

14

Every Team Needs a Leader & a Manager

15

• Note: these are not the same thing.

• A leader inspires with their vision of how everyone could work
together.

• They maintain a positive working environment.

• They actively create their team culture.

• They promote fair play among team members.

• They acknowledge their team members’ individuality.

• They are humble and understand that others may know more
than they do.

How to be a Great Manager

16

• Managers handle work assignments and day-to-day
scheduling.

• Managers find resources to support their team’s tasks.

• Managers continuously improve their team’s processes.

• Managers allow team members to work autonomously,
without micromanaging them.

• Managers facilitate communicate between team
members.

Choosing a Team Leader

17

• Some leaders are respected for technical excellence.

• Some leaders are chosen based on past
accomplishments.

• Some leaders have high EQ (emotional quotient) and earn
everyone’s trust.

• Some leaders take the position through force of will and
because others acquiesce.

Why do you want to be team leader?

Divide Work and Integrate

18

Is this Issue Useful?

19

Writing Useful Github Issues

20

Writing Useful Github Issues

21

• Issue should include

• Context: explain the conditions which led you to write the issue

• Problem or idea: the context should lead to something

• Previous attempts to solve

• Solution or next step (if possible)

• Be specific!

• Include environment settings, versions, error messages, code
examples when necessary

@Mention or Assign Appropriate People

22

Use Labels

23

• Break the project down by areas of responsibility

• Mark non-triaged issues

• Isolate issues that await additional information from the
reporter

• Example:
• Bug / Duplicate / Documentation / Help Wanted / Invalid /
Enhancement
• status: wip, status: ready to implement, status: needs
discussion

Don’t Forget to Follow Up and Close Issues

24

• closes/resolves #issue_number

Pull Requests

25

How to Write Good Pull Requests

26

How to Write Good Pull Requests

27

How to Write Good Pull Requests

28

• Remember that anyone (in the company) could be
reading your PR

• Be explicit about what/when feedback you want

• @mention individuals that you specifically want to involve
in the discussion, and mention why.
• “/cc @jesseplusplus for clarification on this logic”

Keep your PRs Small

29

Keep your PRs Small

30

Offer Useful Feedback

31

• If you disagree strongly, consider giving it a few minutes before
responding; think before you react.

• Ask, don’t tell. (“What do you think about trying...?” rather than
“Don’t do...”)

• Explain your reasons why code should be changed. (Not in line
with the style guide? A personal preference?)

• Be humble. (“I’m not sure, let’s try...”)

• Avoid hyperbole. (“NEVER do...”)

• Be aware of negative bias with online communication.

Avoid Duplicates

32

• “Duplicate of” issue/pull request number

Be a Nice Person

33

Knowledge Sharing

34

Importance of Documentation

35

Types of Documentation

36

Maalej, W., & Robillard, M. P. (2013). Patterns of knowledge in API reference documentation. IEEE Transactions on Software Engineering, 39(9), 1264-1282.

Know Your Audience

37

• Internal document for your team (e.g., meeting note)

• Documentation for project contributors

• Documentation for non-developer collaborators (e.g., UX
researchers)

• Documentation for developer users

• Documentation for clients with no software knowldge

• User manual for end users

Importance of Asking Questions

38

How to Ask Questions

39

Make it Easy for People to Help You

40

• I am trying to ___, so that I can ___. I am running into
___.
I have looked at ___ and tried ___.

• + I’m using this tech stack: ___.

• + I’m getting this error/result: ___.

• + I think the problem could be ___.

Avoid Duplication

41

Resolving Conflicts

42

Resolving Conflicts

43

Communication!

44

Communication

Communication

Communication

Communication

You can’t solve any Problem
without Communication!

Conflict Resolution

45

• Your goal: Find a solution to the problem and move forward.
• As a smart person on ”TedLasso” once said,“Fight forward,not back.”

• Make sure that everybody works from the same set of facts.

• Establish ground rules for your team’s discussion.
• Talk about how the situation made you feel.Never presume anything about
anyone else.

• Remain calm and rational. If you feel triggered or threatened, extract yourself from
the situation, wait an hour to chill out, and then try again.

• If you reach an impasse, talk to your team leader.

• If your team remains in conflict, escalate to Dr. Moran.
• I can help to mediate

Software Testing

46

Learning Goals

47

• Identify the scope and limitations of software testing

• Appreciate software testing as a methodology to use automation in improving
software quality

• Describe the benefits of using continuous integration and deployment (CI/CD)

• Measure the quality of software tests and define test adequacy criteria

• Enumerate different levels of testing such as unit testing, integration testing,
system testing, and testing in production

• Describe the principles of test-driven development

• Outline design principles for writing good tests

• Recognize and avoid testing anti-patterns

What is Testing Good For?

48

• What is testing?

• Execution of code on sample inputs in a controlled
environment

• Principle goals:

• Validation: program meets requirements, including
quality attributes.

• Defect testing: reveal failures.

What is Testing Good For?

49

• Why should we test? What does testing achieve?

• What does testing not achieve?

• When should we test?

• And where should we run the tests?

• What should we test?

• What CAN we test? (Software quality attributes)

• How should we test?

• How many ways can you test the sort() function?

• How good are our tests?

• How to measure test quality?

What Makes a Good Test?

50

What Makes a Good Test?

51

https://github.com/TheAxelander/OpenBudgeteer

What Makes a Good Test?

52

https://github.com/TheAxelander/OpenBudgeteer

Why Write Tests at All?

53

• [Low bar] Ensure that our software meets requirements, is correct, etc.

• Preventing bugs or quality degradations from being accidentally introduced in
the future -> Regression Testing

• Helps uncover unexpected behaviors that can’t be identified by reading
source code

• Increased confidence in changes (“will I break the internet with this commit?”)

• Bridges the gap between a declarative view of the system (i.e., requirements)
and an imperative view (i.e., implementation) by means of redundancy.

• Tests are executable documentation; increases code maintainability

• Forces writing testable code <-> checks software design

Testing Levels

54

• Unit testing

• Code level, E.g. is a function implemented correctly?

• Does not require setting up a complex environment

• Integration testing

• Do components interact correctly? E.g. a feature that cuts across client and
server.

• Usually requires some environment setup, but can abstract/mock out other
components that are not being tested (e.g. network)

• System testing

• Validating the whole system end-to-end (E2E)

• Requires complete deployment in a staging area, but fake data

• Testing in production

• Real data but more risks

What are the Limitations of Testing?

55

• "Testing shows the presence, not the absence of bugs.” -
Edsger W. Dijkstra

• Testing doesn’t really give any formal assurances

• Writing tests is hard, time consuming

• Knowing if your tests are good enough is not obvious

• Executing tests can be expensive, especially as software
complexity and configuration space grows

• Full test suite for a single large app can take several days
to run

What can We Test for?

56

Test Oracles

57

• “Oracles” are mechanisms that tell you when program
execution seems abnormal or unexpected

• E.g. assert, segfault, exception

• Other examples: performance threshold, memory
footprint, address sanitizer

Test Oracles

58

• Obvious in some applications (e.g. “sort()”) but more
challenging in others (e.g. “encrypt()” or UI-based tests)

• Lack of good oracles can limit the scalability of testing.
Easy to generate lots of input data, but not easy to
validate if output (or other program behavior) is correct.

• Fortunately, we have some tricks.

Differential Testing

59

• If you have two implementations of the same specification, then their output
should match on all inputs.
• E.g. `mergeSort(x).equals(bubbleSort(x))` -> should always be true
• Special case of a property test, with a free oracle.

• If a differential test fails, at least one of the two implementations is wrong.
• But which one?
• If you have N>2 implementations, run them all and compare. Majority wins
(the odd one out is buggy).

• Differential testing works well when testing programs that implement
standard specifications such as compilers, browsers, SQL engines, XML/
JSON parsers, media players, etc.
• Not feasible in general e.g. for UCF’s custom grad application system.

Regression Testing

60

• Differential testing through time (or versions, say V1 and
V2).

• Assuming V1 and V2 don’t add a new feature or fix a
known bug, then f(x) in V1 should give the same result as
f(x) in V2.

• Key Idea: Assume the current version is correct. Run
program on current version and log output. Compare all
future versions to that output.

When Should We Test?

61

Test Driven Development

62

• Tests first!

• Popular agile technique

• Write tests as specifications before code

• Never write code without a failing test

• Claims:
• Design approach toward testable design
• Think about interfaces first
• Avoid unneeded code
• Higher product quality
• Higher test suite quality
• Higher overall productivity

Common Bar for Contributions

63

Regression Testing

64

• Usual model:

• Introduce regression tests for bug fixes, etc.

• Compare results as code evolves

• Code1 + TestSet -> TestResults1

• Code2 + TestSet -> TestResults2

• As code evolves, compare TestResults1 with TestResults2, etc.

• Benefits:

• Ensure bug fixes remain in place and bugs do not reappear.

• Reduces reliance on specifications, as <TestSet,TestResults1> acts as one.

Continuous Integration & Deployment

65

How Good Are Our Tests?

66

Code Coverage

67

• Line coverage
• Statement coverage
• Branch coverage
• Instruction coverage
• Basic-block coverage
• Edge coverage
• Path coverage
•...

Code Coverage

68

We Can Measure Coverage on Almost Anything

69

Be Aware of Coverage Chasing

70

• Recall: issues with metrics and incentives
• Also: Numbers can be deceptive

• 100% coverage != exhaustively tested
• “Coverage is not strongly correlated with suite
effectiveness”

• Based on empirical study on GitHub projects
[Inozemtseva and Holmes, ICSE’14]

• Still, it’s a good low bar
• Code that is not executed has definitely not been tested

Coverage of What?

71

• Distinguish code being tested and code being executed

• Library code >>>> Application code

• Can selectively measure coverage

• All application code >>> code being tested

• Not always easy to do this within an application

Coverage != Outcome

72

• What’s better, tests that always pass or tests that always fail?

• Tests should ideally be falsifiable. Boundary determines

• specification

• Ideally:
• Correct implementations should pass all tests
• Buggy code should fail at least one test
• Intuition behind mutation testing (we’ll revisit this next week)

• What if tests have bugs?
• Pass on buggy code or fail on correct code

• Even worse: flaky tests
• Pass or fail on the same test case nondeterministically

• What’s the worst type of test?

Test Design Principles

73

• Use public APIs only

• Clearly distinguish inputs, configuration, execution, and
oracle

• Be simple; avoid complex control flow such as
conditionals and loops

• Tests shouldn’t need to be frequently changed or
refactored
• Definitely not as frequently as the code being tested
changes

Anti-Patterns

74

• Snoopy oracles
• Relying on implementation state instead of observable behavior
• E.g. Checking variables or fields instead of return values

• Brittle tests
• Overfitting to special-case behavior instead of general principle
• E.g. hard-coding message strings instead of behavior

• Slow tests
• Self-explanatory(beware of heavy environments, I/O, and sleep())

• Flaky tests
• Tests that pass or fail nondeterministically
• Often because of reliance on random inputs, timing (e.g. sleep(1000)),
availability of external services (e.g. fetching data over the network in a unit
test), or dependency on order of test execution (e.g. previous test sets up
global variables in certain way)

Takeaways

75

• Most tests that you will write will be muuuuuuch more complex than
testing a sort function.

• Need to set up environment, create objects whose methods to test,
create objects for test data, get all these into an interesting state, test
multiple APIs with varying arguments, etc.

• Many tests will require mocks (i.e., faking a resource-intensive
component).

• General principles of many of these strategies still apply:
• Writing tests can be time consuming
• Determining test adequacy can be hard (if not impossible)
• Test oracles are not easy
• Advanced test strategies have trade-offs (high costs with high returns)

