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Administrivia
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• Team-forming due by Thursday! 

• If you are not on a team, let me know and I can try to 
help 

• Assignment 2 (Almost) Posted 

• I promise it will be worth it 😅 

• Getting familiar with FakeFlix, the subject of our SDE 
project 

• Due dates will be adjusted accordingly 

• I will be posting resources related to Javascript and 
React from my past classes to assist.



Software Teams & Communication
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Establish a Collaboration Process
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Communication App Confusion
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Select the Right Communication Tools
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Establish Communication Patterns
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• Asana, Trello, Microsoft Projects, … 

• Github Wiki, Google Docs, Notion, ...  

• Github Issues, Jira, … 

• Email, Slack, Facebook groups, … 

• Zoom, Microsoft Teams, Skype, Phone call, ...  

• Face-to-face meetings



CEN 5016 Communication Channels
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• Ed Discussions 

• Regular meeting (Lectures, Recitations)  

• Office Hours 

• Webcourses 

• Course Webpage



Check Out Other Projects
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Communication Expectation
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• Quality of service guarantee 

• How soon will you get back to your teammates? 

•  Weekend? Evening?  

• Emergency 

• Tag w/ 911  

• Notify everyone with @channel



Running a Meeting
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How to Run a Meeting
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• The Three Rules of Running a Meeting 

• Set the Agenda 

• Start on Time. End on Time.  

• End with Action Items (and share them - Github Issues, 
Meeting Notes, ...)



How to Run a Meeting
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• Set and document clear responsibilities and expectations  

• Make everyone contribute 

• Possible Roles: Coordinator, Scribe, Checker  

• Manage Personalities 

• Be Vulnerable



Atlassian Meeting Flowchart
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Every Team Needs a Leader & a Manager
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• Note: these are not the same thing.  

• A leader inspires with their vision of how everyone could work 
together.  

• They maintain a positive working environment. 

• They actively create their team culture.  

• They promote fair play among team members.  

• They acknowledge their team members’ individuality.  

• They are humble and understand that others may know more 
than they do. 



How to be a Great Manager
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• Managers handle work assignments and day-to-day 
scheduling.  

• Managers find resources to support their team’s tasks.  

• Managers continuously improve their team’s processes.  

• Managers allow team members to work autonomously, 
without micromanaging them.  

• Managers facilitate communicate between team 
members.



Choosing a Team Leader
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• Some leaders are respected for technical excellence.  

• Some leaders are chosen based on past 
accomplishments.  

• Some leaders have high EQ (emotional quotient) and earn 
everyone’s trust.  

• Some leaders take the position through force of will and 
because others acquiesce.

Why do you want to be team leader?



Divide Work and Integrate
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Is this Issue Useful?
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Writing Useful Github Issues
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Writing Useful Github Issues
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• Issue should include 

• Context: explain the conditions which led you to write the issue 

• Problem or idea: the context should lead to something  

• Previous attempts to solve  

• Solution or next step (if possible)  

• Be specific!  

• Include environment settings, versions, error messages, code 
examples when necessary



@Mention or Assign Appropriate People
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Use Labels
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• Break the project down by areas of responsibility  

• Mark non-triaged issues  

• Isolate issues that await additional information from the 
reporter  

• Example: 
• Bug / Duplicate / Documentation / Help Wanted / Invalid /  
Enhancement 
• status: wip, status: ready to implement, status: needs 
discussion



Don’t Forget to Follow Up and Close Issues
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• closes/resolves #issue_number



Pull Requests
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How to Write Good Pull Requests
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How to Write Good Pull Requests
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How to Write Good Pull Requests
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• Remember that anyone (in the company) could be 
reading your PR  

• Be explicit about what/when feedback you want  

• @mention individuals that you specifically want to involve 
in the discussion, and mention why.  
• “/cc @jesseplusplus for clarification on this logic” 



Keep your PRs Small
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Keep your PRs Small
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Offer Useful Feedback
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• If you disagree strongly, consider giving it a few minutes before 
responding; think before you react.  

• Ask, don’t tell. (“What do you think about trying...?” rather than 
“Don’t do...”)  

• Explain your reasons why code should be changed. (Not in line 
with the style guide? A personal preference?)  

• Be humble. (“I’m not sure, let’s try...”)  

• Avoid hyperbole. (“NEVER do...”)  

• Be aware of negative bias with online communication. 



Avoid Duplicates
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• “Duplicate of” issue/pull request number



Be a Nice Person
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Knowledge Sharing
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Importance of Documentation
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Types of Documentation
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Maalej, W., & Robillard, M. P. (2013). Patterns of knowledge in API reference documentation. IEEE Transactions on Software Engineering, 39(9), 1264-1282. 



Know Your Audience
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• Internal document for your team (e.g., meeting note)  

• Documentation for project contributors  

• Documentation for non-developer collaborators (e.g., UX 
researchers)  

• Documentation for developer users  

• Documentation for clients with no software knowldge  

• User manual for end users



Importance of Asking Questions
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How to Ask Questions
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Make it Easy for People to Help You
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• I am trying to ___, so that I can ___. I am running into 
___. 
I have looked at ___ and tried ___.  

• + I’m using this tech stack: ___.  

• + I’m getting this error/result: ___.  

• + I think the problem could be ___. 



Avoid Duplication
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Resolving Conflicts
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Resolving Conflicts
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Communication!
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Communication

Communication

Communication

Communication

You can’t solve any Problem 
without Communication!



Conflict Resolution
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• Your goal: Find a solution to the problem and move forward. 
• As a smart person on ”TedLasso” once said,“Fight forward,not back.”  

• Make sure that everybody works from the same set of facts.  

• Establish ground rules for your team’s discussion.  
• Talk about how the situation made you feel.Never presume anything about 
anyone else.  

• Remain calm and rational. If you feel triggered or threatened, extract yourself from  
the situation, wait an hour to chill out, and then try again.  

• If you reach an impasse, talk to your team leader.  

• If your team remains in conflict, escalate to Dr. Moran. 
• I can help to mediate 



Software Testing
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Learning Goals
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• Identify the scope and limitations of software testing  

• Appreciate software testing as a methodology to use automation in improving 
software quality  

• Describe the benefits of using continuous integration and deployment (CI/CD)  

• Measure the quality of software tests and define test adequacy criteria  

• Enumerate different levels of testing such as unit testing, integration testing, 
system testing, and testing in production  

• Describe the principles of test-driven development  

• Outline design principles for writing good tests  

• Recognize and avoid testing anti-patterns 



What is Testing Good For?
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• What is testing? 

• Execution of code on sample inputs in a controlled 
environment  

• Principle goals: 

• Validation: program meets requirements, including 
quality attributes. 

• Defect testing: reveal failures.



What is Testing Good For?
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• Why should we test? What does testing achieve?


• What does testing not achieve?  

• When should we test?


• And where should we run the tests?  

• What should we test?


• What CAN we test? (Software quality attributes)  

• How should we test?


• How many ways can you test the sort() function?  

• How good are our tests?


• How to measure test quality? 



What Makes a Good Test?
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What Makes a Good Test?
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https://github.com/TheAxelander/OpenBudgeteer



What Makes a Good Test?
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https://github.com/TheAxelander/OpenBudgeteer



Why Write Tests at All?

53

• [Low bar] Ensure that our software meets requirements, is correct, etc.  

• Preventing bugs or quality degradations from being accidentally introduced in 
the future -> Regression Testing 

• Helps uncover unexpected behaviors that can’t be identified by reading 
source code  

• Increased confidence in changes (“will I break the internet with this commit?”)  

• Bridges the gap between a declarative view of the system (i.e., requirements) 
and an imperative view (i.e., implementation) by means of redundancy.  

• Tests are executable documentation; increases code maintainability  

• Forces writing testable code <-> checks software design 



Testing Levels
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• Unit testing


• Code level, E.g. is a function implemented correctly? 

• Does not require setting up a complex environment  

• Integration testing


• Do components interact correctly? E.g. a feature that cuts across client and 
server.  

• Usually requires some environment setup, but can abstract/mock out other 
components that are not being tested (e.g. network)  

• System testing


• Validating the whole system end-to-end (E2E) 

• Requires complete deployment in a staging area, but fake data  

• Testing in production


• Real data but more risks 



What are the Limitations of  Testing?
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• "Testing shows the presence, not the absence of bugs.” - 
Edsger W. Dijkstra  

• Testing doesn’t really give any formal assurances  

• Writing tests is hard, time consuming  

• Knowing if your tests are good enough is not obvious  

• Executing tests can be expensive, especially as software 
complexity and configuration space grows  

• Full test suite for a single large app can take several days 
to run



What can We Test for?
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Test Oracles
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• “Oracles” are mechanisms that tell you when program 
execution seems abnormal or unexpected  

• E.g. assert, segfault, exception  

• Other examples: performance threshold, memory 
footprint, address sanitizer 



Test Oracles
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• Obvious in some applications (e.g. “sort()”) but more 
challenging in others (e.g. “encrypt()” or UI-based tests)  

• Lack of good oracles can limit the scalability of testing. 
Easy to generate lots of input data, but not easy to 
validate if output (or other program behavior) is correct.  

• Fortunately, we have some tricks. 



Differential Testing
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• If you have two implementations of the same specification, then their output 
should match on all inputs.  
• E.g. `mergeSort(x).equals(bubbleSort(x))` -> should always be true  
• Special case of a property test, with a free oracle.  

• If a differential test fails, at least one of the two implementations is wrong.  
• But which one?  
• If you have N>2 implementations, run them all and compare. Majority wins 
(the odd one out is buggy).  

• Differential testing works well when testing programs that implement 
standard specifications such as compilers, browsers, SQL engines, XML/
JSON parsers, media players, etc.  
• Not feasible in general e.g. for UCF’s custom grad application system. 



Regression Testing
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• Differential testing through time (or versions, say V1 and 
V2). 

• Assuming V1 and V2 don’t add a new feature or fix a 
known bug, then f(x) in V1 should give the same result as 
f(x) in V2.  

• Key Idea: Assume the current version is correct. Run 
program on current version and log output. Compare all 
future versions to that output.



When Should We Test?
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Test Driven Development
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• Tests first! 

• Popular agile technique 

• Write tests as specifications before code 

• Never write code without a failing test  

• Claims: 
• Design approach toward testable design  
• Think about interfaces first 
• Avoid unneeded code 
• Higher product quality 
• Higher test suite quality 
• Higher overall productivity 



Common Bar for Contributions
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Regression Testing
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• Usual model:  

• Introduce regression tests for bug fixes, etc.  

• Compare results as code evolves 

• Code1 + TestSet -> TestResults1  

• Code2 + TestSet -> TestResults2


• As code evolves, compare TestResults1 with TestResults2, etc.  

• Benefits:  

• Ensure bug fixes remain in place and bugs do not reappear.  

• Reduces reliance on specifications, as <TestSet,TestResults1> acts as one.



Continuous Integration & Deployment
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How Good Are Our Tests?
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Code Coverage
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• Line coverage 
• Statement coverage  
• Branch coverage 
• Instruction coverage  
• Basic-block coverage  
• Edge coverage 
• Path coverage 
•...



Code Coverage
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We Can Measure Coverage on Almost Anything
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Be Aware of Coverage Chasing
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• Recall: issues with metrics and incentives  
• Also: Numbers can be deceptive  

• 100% coverage != exhaustively tested 
• “Coverage is not strongly correlated with suite 
effectiveness”  

• Based on empirical study on GitHub projects 
[Inozemtseva and Holmes, ICSE’14]  

• Still, it’s a good low bar 
• Code that is not executed has definitely not been tested 



Coverage of What?
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• Distinguish code being tested and code being executed 

• Library code >>>> Application code  

• Can selectively measure coverage  

• All application code >>> code being tested 

• Not always easy to do this within an application 



Coverage != Outcome
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• What’s better, tests that always pass or tests that always fail?  

• Tests should ideally be falsifiable. Boundary determines  

• specification  

• Ideally: 
• Correct implementations should pass all tests 
• Buggy code should fail at least one test 
• Intuition behind mutation testing (we’ll revisit this next week)  

• What if tests have bugs? 
• Pass on buggy code or fail on correct code  

• Even worse: flaky tests 
• Pass or fail on the same test case nondeterministically  

• What’s the worst type of test? 



Test Design Principles
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• Use public APIs only  

• Clearly distinguish inputs, configuration, execution, and  
oracle  

• Be simple; avoid complex control flow such as 
conditionals and loops  

• Tests shouldn’t need to be frequently changed or 
refactored  
• Definitely not as frequently as the code being tested 
changes  



Anti-Patterns

74

• Snoopy oracles 
• Relying on implementation state instead of observable behavior  
• E.g. Checking variables or fields instead of return values  

• Brittle tests 
• Overfitting to special-case behavior instead of general principle  
• E.g. hard-coding message strings instead of behavior  

• Slow tests  
• Self-explanatory(beware of heavy environments, I/O, and sleep())  

• Flaky tests  
• Tests that pass or fail nondeterministically  
• Often because of reliance on random inputs, timing (e.g. sleep(1000)), 
availability of external services (e.g. fetching data over the network in a unit 
test), or dependency on order of test execution (e.g. previous test sets up 
global variables in certain way) 



Takeaways

75

• Most tests that you will write will be muuuuuuch more complex than 
testing a sort function.  

• Need to set up environment, create objects whose methods to test, 
create objects for test data, get all these into an interesting state, test 
multiple APIs with varying arguments, etc.  

• Many tests will require mocks (i.e., faking a resource-intensive 
component).  

• General principles of many of these strategies still apply:  
• Writing tests can be time consuming 
• Determining test adequacy can be hard (if not impossible) 
• Test oracles are not easy 
• Advanced test strategies have trade-offs (high costs with high returns) 


