
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Fall 2024

Week 3 - Class 1I:
Software Teams &
Communication

Administrivia

2

• Team-forming this week - Due Thursday, Sept
12th EoD!!

• Teams of 3 students

• See Ed Discussions Post

• Assignment 2 Coming Soon!

• Probably End of the Day today/tomorrow morning

• May adjust due date to give more time

Project Planning & Agile Development

3

Processes

4

Waterfall was the OG Software Process

5

Akin to Processes Pioneered in Auto
Manufacturing by Ford

6

LEAN Production Adapts to Variable Demand

7

• Toyota Production System (TPS)

• Build only what is needed, only when it is needed.

• Use the “pull” system to avoid overproduction (Kanban)

• Stop to fix problems, to get quality right from the start
(Jidoka)

• Workers are multi-skilled and understand the whole
process; take
ownership

• Lots of recent software buzzwords build on these ideas

• Just-in-time, DevOps, Shift-Left

Now, Most Teams use some form of Agile Methods

8

Now, Most Teams use some form of Agile Methods

9

Core Concepts in Agile

10

Scrum

11

Elements of Scrum

12

Backlogs

13

• The product backlog is all the features for the
product

• The sprint backlog is all the features that will be
worked on for that sprint. These should be
broken down into discrete tasks:
• Fine-grained
• Estimated
• Assigned to individual team members
• Acceptance criteria should be defined

• User Stories are often used

Kanban Boards

14

Scrum Meetings

15

• Sprint Planning Meeting
• Entire Team decides together what to tackle for that
sprint

• • Daily Scrum Meeting
• Quick Meeting to touch base on :
• What have I done? What am I doing next? What am I
stuck on/need help?

• Sprint Retrospective
• Review sprint process

• Sprint Review Meeting
• Review Product

User Stories

16

User Stories

17

Card

18

• “As a [role], I want [function], so that [value]”

Card

19

• What must a developer do to implement this user story?

Confirmation

20

• How can we tell that the user story has been achieved

• It’s easy to tell when the developer finished the code.

• But, how do you tell that the customer is happy?

How to Evaluate a User Story

21

Independent

22

• Schedule in any order.

• Not overlapping in concept.

• Not always possible.

Negotiable

23

• Details to be negotiated during
development.

• A good story captures the essence,
not the details.

Valuable

24

• This story needs to have value to
someone (hopefully the customer).

• Especially relevant to splitting up
issues.

Estimable

25

• Helps keep the size small.

• Ensure we negotiated correctly.

• “Plans are nothing, planning is
everything” - Dwight D. Eisenhower

Small

26

• Can be written on a 3x5 card.

• At most two person-weeks of work.

• Too big === unable to estimate

Testable

27

• Ensures understanding of task

• We know when we can mark task
“Done”

• Unable to test === I do not
understand it

Software Teams & Communication

28

Learning Goals

29

• Describe the pros and cons of working as a team

• Recognize the importance of communication in collaboration

• Recognize the need of having multiple communication channels

• Select an appropriate communication tool for a given
communication goal

• Ask technical questions effectively

• Write clear and specific Github issues, pull requests, and
comments

We all Work in a Team

30

We all Work in a Team

31

CEN 5016

Instructor, TAs,

Classmates

TAs

Your Team

You

Working as a Team

32

• Design & implement software

• Establish a collaboration
process

• Meet with the team

• Choose a leader

• Divide work and integrate

• Share knowledge

• Resolve conflicts

Stages of Team Formation

33

Norming

34

• When working with someone who is remote, how do you like to work together?

• How do you manage your time when you get busy with a lot of tasks?

• How do you feel about chatting by text message, audio call, video call?

• Exchange phone numbers with your project partner(s) in case your Internet goes out and
you still want to work on the project together.

• Negotiate when you can work on the project together outside of class.

• Have you had a positive prior teaming experience?

• How often did your team meet?

• Did your team have a leader? If yes, what did that leader do?

• What was your role on the team?

• How well did you get along with your teammates related to work, or related to non-work?

What Not to Do 🧐

35

What Not to Do 🧐

36

Establish a Collaboration Process

37

Communication App Confusion

38

Select the Right Communication Tools

39

Establish Communication Patterns

40

• Asana, Trello, Microsoft Projects, …

• Github Wiki, Google Docs, Notion, ...

• Github Issues, Jira, …

• Email, Slack, Facebook groups, …

• Zoom, Microsoft Teams, Skype, Phone call, ...

• Face-to-face meetings

CEN 5016 Communication Channels

41

• Ed Discussions

• Regular meeting (Lectures, Recitations)

• Office Hours

• Webcourses

• Course Webpage

Check Out Other Projects

42

Communication Expectation

43

• Quality of service guarantee

• How soon will you get back to your teammates?

• Weekend? Evening?

• Emergency

• Tag w/ 911

• Notify everyone with @channel

Running a Meeting

44

How to Run a Meeting

45

• The Three Rules of Running a Meeting

• Set the Agenda

• Start on Time. End on Time.

• End with Action Items (and share them - Github Issues,
Meeting Notes, ...)

How to Run a Meeting

46

• Set and document clear responsibilities and expectations

• Make everyone contribute

• Possible Roles: Coordinator, Scribe, Checker

• Manage Personalities

• Be Vulnerable

Atlassian Meeting Flowchart

47

Every Team Needs a Leader & a Manager

48

• Note: these are not the same thing.

• A leader inspires with their vision of how everyone could work
together.

• They maintain a positive working environment.

• They actively create their team culture.

• They promote fair play among team members.

• They acknowledge their team members’ individuality.

• They are humble and understand that others may know more
than they do.

How to be a Great Manager

49

• Managers handle work assignments and day-to-day
scheduling.

• Managers find resources to support their team’s tasks.

• Managers continuously improve their team’s processes.

• Managers allow team members to work autonomously,
without micromanaging them.

• Managers facilitate communicate between team
members.

Choosing a Team Leader

50

• Some leaders are respected for technical excellence.

• Some leaders are chosen based on past
accomplishments.

• Some leaders have high EQ (emotional quotient) and earn
everyone’s trust.

• Some leaders take the position through force of will and
because others acquiesce.

Why do you want to be team leader?

Divide Work and Integrate

51

Is this Issue Useful?

52

Writing Useful Github Issues

53

Writing Useful Github Issues

54

• Issue should include

• Context: explain the conditions which led you to write the issue

• Problem or idea: the context should lead to something

• Previous attempts to solve

• Solution or next step (if possible)

• Be specific!

• Include environment settings, versions, error messages, code
examples when necessary

@Mention or Assign Appropriate People

55

Use Labels

56

• Break the project down by areas of responsibility

• Mark non-triaged issues

• Isolate issues that await additional information from the
reporter

• Example:
• Bug / Duplicate / Documentation / Help Wanted / Invalid /
Enhancement
• status: wip, status: ready to implement, status: needs
discussion

Don’t Forget to Follow Up and Close Issues

57

• closes/resolves #issue_number

Pull Requests

58

How to Write Good Pull Requests

59

How to Write Good Pull Requests

60

How to Write Good Pull Requests

61

• Remember that anyone (in the company) could be
reading your PR

• Be explicit about what/when feedback you want

• @mention individuals that you specifically want to involve
in the discussion, and mention why.
• “/cc @jesseplusplus for clarification on this logic”

Keep your PRs Small

62

Keep your PRs Small

63

Offer Useful Feedback

64

• If you disagree strongly, consider giving it a few minutes before
responding; think before you react.

• Ask, don’t tell. (“What do you think about trying...?” rather than
“Don’t do...”)

• Explain your reasons why code should be changed. (Not in line
with the style guide? A personal preference?)

• Be humble. (“I’m not sure, let’s try...”)

• Avoid hyperbole. (“NEVER do...”)

• Be aware of negative bias with online communication.

Avoid Duplicates

65

• “Duplicate of” issue/pull request number

Be a Nice Person

66

Knowledge Sharing

67

Importance of Documentation

68

Types of Documentation

69

Maalej, W., & Robillard, M. P. (2013). Patterns of knowledge in API reference documentation. IEEE Transactions on Software Engineering, 39(9), 1264-1282.

Know Your Audience

70

• Internal document for your team (e.g., meeting note)

• Documentation for project contributors

• Documentation for non-developer collaborators (e.g., UX
researchers)

• Documentation for developer users

• Documentation for clients with no software knowldge

• User manual for end users

Importance of Asking Questions

71

How to Ask Questions

72

Make it Easy for People to Help You

73

• I am trying to ___, so that I can ___. I am running into
___.
I have looked at ___ and tried ___.

• + I’m using this tech stack: ___.

• + I’m getting this error/result: ___.

• + I think the problem could be ___.

Avoid Duplication

74

Resolving Conflicts

75

Resolving Conflicts

76

Communication!

77

Communication

Communication

Communication

Communication

You can’t solve any Problem
without Communication!

Conflict Resolution

78

• Your goal: Find a solution to the problem and move forward.
• As a smart person on ”TedLasso” once said,“Fight forward,not back.”

• Make sure that everybody works from the same set of facts.

• Establish ground rules for your team’s discussion.
• Talk about how the situation made you feel.Never presume anything about
anyone else.

• Remain calm and rational. If you feel triggered or threatened, extract yourself from
the situation, wait an hour to chill out, and then try again.

• If you reach an impasse, talk to your team leader.

• If your team remains in conflict, escalate to Dr. Moran.
• I can help to mediate

