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Administrivia
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• Team-forming this week - Due Thursday, Sept 
12th EoD!! 

• Teams of 3 students 

• See Ed Discussions Post 

• Assignment 2 Coming Soon! 

• Probably End of the Day today/tomorrow morning 

• May adjust due date to give more time



Project Planning & Agile Development
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Processes

4



Waterfall was the OG Software Process
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Akin to Processes Pioneered in Auto 
Manufacturing by Ford
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LEAN Production Adapts to Variable Demand
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• Toyota Production System (TPS) 

• Build only what is needed, only when it is needed.  

• Use the “pull” system to avoid overproduction (Kanban)  

• Stop to fix problems, to get quality right from the start 
(Jidoka)  

• Workers are multi-skilled and understand the whole 
process; take  
ownership 

• Lots of recent software buzzwords build on these ideas  

• Just-in-time, DevOps, Shift-Left



Now, Most Teams use some form of Agile Methods
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Now, Most Teams use some form of Agile Methods
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Core Concepts in Agile
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Scrum

11



Elements of Scrum
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Backlogs
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• The product backlog is all the features for the 
product  

• The sprint backlog is all the features that will be 
worked on for that sprint. These should be 
broken down into discrete tasks:  
• Fine-grained 
• Estimated 
• Assigned to individual team members  
• Acceptance criteria should be defined  

• User Stories are often used 



Kanban Boards
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Scrum Meetings
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• Sprint Planning Meeting 
• Entire Team decides together what to tackle for that 
sprint  

• • Daily Scrum Meeting 
• Quick Meeting to touch base on :  
• What have I done? What am I doing next? What am I 
stuck on/need help?  

• Sprint Retrospective  
• Review sprint process  

• Sprint Review Meeting  
• Review Product 



User Stories
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User Stories

17



Card

18

• “As a [role], I want [function], so that [value]”



Card
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• What must a developer do to implement this user story? 



Confirmation
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• How can we tell that the user story has been achieved 

• It’s easy to tell when the developer finished the code. 

• But, how do you tell that the customer is happy?



How to Evaluate a User Story
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Independent
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• Schedule in any order. 

• Not overlapping in concept. 

• Not always possible.



Negotiable
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• Details to be negotiated during 
development. 

• A good story captures the essence, 
not the details.



Valuable
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• This story needs to have value to 
someone (hopefully the customer).  

• Especially relevant to splitting up 
issues.



Estimable
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• Helps keep the size small.  

• Ensure we negotiated correctly.  

• “Plans are nothing, planning is 
everything” - Dwight D. Eisenhower



Small
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• Can be written on a 3x5 card. 

• At most two person-weeks of work. 

• Too big === unable to estimate



Testable
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• Ensures understanding of task 

• We know when we can mark task 
“Done” 

• Unable to test === I do not 
understand it



Software Teams & Communication
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Learning Goals
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• Describe the pros and cons of working as a team  

• Recognize the importance of communication in collaboration  

• Recognize the need of having multiple communication channels  

• Select an appropriate communication tool for a given 
communication goal  

• Ask technical questions effectively  

• Write clear and specific Github issues, pull requests, and 
comments



We all Work in a Team
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We all Work in a Team
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CEN 5016
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Working as a Team
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• Design & implement software  

• Establish a collaboration 
process 

• Meet with the team 

• Choose a leader  

• Divide work and integrate 

• Share knowledge 

• Resolve conflicts 



Stages of  Team Formation
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Norming
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• When working with someone who is remote, how do you like to work together?  

• How do you manage your time when you get busy with a lot of tasks?  

• How do you feel about chatting by text message, audio call, video call? 

• Exchange phone numbers with your project partner(s) in case your Internet goes out and 
you still want to work on the project together.  

• Negotiate when you can work on the project together outside of class.  

• Have you had a positive prior teaming experience?  

• How often did your team meet?  

• Did your team have a leader? If yes, what did that leader do?  

• What was your role on the team?  

• How well did you get along with your teammates related to work, or related to non-work? 



What Not to Do 🧐
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What Not to Do 🧐
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Establish a Collaboration Process
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Communication App Confusion
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Select the Right Communication Tools
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Establish Communication Patterns
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• Asana, Trello, Microsoft Projects, … 

• Github Wiki, Google Docs, Notion, ...  

• Github Issues, Jira, … 

• Email, Slack, Facebook groups, … 

• Zoom, Microsoft Teams, Skype, Phone call, ...  

• Face-to-face meetings



CEN 5016 Communication Channels
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• Ed Discussions 

• Regular meeting (Lectures, Recitations)  

• Office Hours 

• Webcourses 

• Course Webpage



Check Out Other Projects
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Communication Expectation
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• Quality of service guarantee 

• How soon will you get back to your teammates? 

•  Weekend? Evening?  

• Emergency 

• Tag w/ 911  

• Notify everyone with @channel



Running a Meeting
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How to Run a Meeting
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• The Three Rules of Running a Meeting 

• Set the Agenda 

• Start on Time. End on Time.  

• End with Action Items (and share them - Github Issues, 
Meeting Notes, ...)



How to Run a Meeting
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• Set and document clear responsibilities and expectations  

• Make everyone contribute 

• Possible Roles: Coordinator, Scribe, Checker  

• Manage Personalities 

• Be Vulnerable



Atlassian Meeting Flowchart
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Every Team Needs a Leader & a Manager
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• Note: these are not the same thing.  

• A leader inspires with their vision of how everyone could work 
together.  

• They maintain a positive working environment. 

• They actively create their team culture.  

• They promote fair play among team members.  

• They acknowledge their team members’ individuality.  

• They are humble and understand that others may know more 
than they do. 



How to be a Great Manager
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• Managers handle work assignments and day-to-day 
scheduling.  

• Managers find resources to support their team’s tasks.  

• Managers continuously improve their team’s processes.  

• Managers allow team members to work autonomously, 
without micromanaging them.  

• Managers facilitate communicate between team 
members.



Choosing a Team Leader
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• Some leaders are respected for technical excellence.  

• Some leaders are chosen based on past 
accomplishments.  

• Some leaders have high EQ (emotional quotient) and earn 
everyone’s trust.  

• Some leaders take the position through force of will and 
because others acquiesce.

Why do you want to be team leader?



Divide Work and Integrate
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Is this Issue Useful?
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Writing Useful Github Issues
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Writing Useful Github Issues
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• Issue should include 

• Context: explain the conditions which led you to write the issue 

• Problem or idea: the context should lead to something  

• Previous attempts to solve  

• Solution or next step (if possible)  

• Be specific!  

• Include environment settings, versions, error messages, code 
examples when necessary



@Mention or Assign Appropriate People
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Use Labels
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• Break the project down by areas of responsibility  

• Mark non-triaged issues  

• Isolate issues that await additional information from the 
reporter  

• Example: 
• Bug / Duplicate / Documentation / Help Wanted / Invalid /  
Enhancement 
• status: wip, status: ready to implement, status: needs 
discussion



Don’t Forget to Follow Up and Close Issues
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• closes/resolves #issue_number



Pull Requests
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How to Write Good Pull Requests
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How to Write Good Pull Requests
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How to Write Good Pull Requests
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• Remember that anyone (in the company) could be 
reading your PR  

• Be explicit about what/when feedback you want  

• @mention individuals that you specifically want to involve 
in the discussion, and mention why.  
• “/cc @jesseplusplus for clarification on this logic” 



Keep your PRs Small
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Keep your PRs Small
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Offer Useful Feedback
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• If you disagree strongly, consider giving it a few minutes before 
responding; think before you react.  

• Ask, don’t tell. (“What do you think about trying...?” rather than 
“Don’t do...”)  

• Explain your reasons why code should be changed. (Not in line 
with the style guide? A personal preference?)  

• Be humble. (“I’m not sure, let’s try...”)  

• Avoid hyperbole. (“NEVER do...”)  

• Be aware of negative bias with online communication. 



Avoid Duplicates
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• “Duplicate of” issue/pull request number



Be a Nice Person
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Knowledge Sharing
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Importance of Documentation
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Types of Documentation
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Maalej, W., & Robillard, M. P. (2013). Patterns of knowledge in API reference documentation. IEEE Transactions on Software Engineering, 39(9), 1264-1282. 



Know Your Audience
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• Internal document for your team (e.g., meeting note)  

• Documentation for project contributors  

• Documentation for non-developer collaborators (e.g., UX 
researchers)  

• Documentation for developer users  

• Documentation for clients with no software knowldge  

• User manual for end users



Importance of Asking Questions
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How to Ask Questions
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Make it Easy for People to Help You

73

• I am trying to ___, so that I can ___. I am running into 
___. 
I have looked at ___ and tried ___.  

• + I’m using this tech stack: ___.  

• + I’m getting this error/result: ___.  

• + I think the problem could be ___. 



Avoid Duplication
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Resolving Conflicts
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Resolving Conflicts
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Communication!
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Communication

Communication

Communication

Communication

You can’t solve any Problem 
without Communication!



Conflict Resolution
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• Your goal: Find a solution to the problem and move forward. 
• As a smart person on ”TedLasso” once said,“Fight forward,not back.”  

• Make sure that everybody works from the same set of facts.  

• Establish ground rules for your team’s discussion.  
• Talk about how the situation made you feel.Never presume anything about 
anyone else.  

• Remain calm and rational. If you feel triggered or threatened, extract yourself from  
the situation, wait an hour to chill out, and then try again.  

• If you reach an impasse, talk to your team leader.  

• If your team remains in conflict, escalate to Dr. Moran. 
• I can help to mediate 


