
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Fall 2024

Week 2 - Class 1:
Measurement &

Metrics

Administrivia

2

• Course Schedule Posted

• Office Hours Decided (kind of)

• Tuesday/Thursday 1:00pm-2:00pm (before class) Hybrid

• Or by appointment

• Let me know if you are not on Ed Discussions

• Assignment 1, Getting started with Git, GitHub, and Typescript is due
tonight at 11:59 pm

• Use Megathread on Ed Discussions to ask questions

• Team-forming this week

• Teams of 3 students

• Look out for a post on Ed Discussions

• Assignment 2 out Thursday

Software Archeology & Anthropology

3

Creating a Model of Unfamiliar Code

4

Information Gathering

5

• Basic needs:
• Code/file search and navigation
• Code editing (probes)
• Execution of code, tests
• Observation of output (observation)

• At the command line: grep and find! (Google for tutorials)

• Many choices here on tools! Depends on circumstance.
• grep/find/etc.
• Knowing Unix tools is invaluable
• A decent IDE
• Debugger
• Test frameworks + coverage reports
• Google (or your favorite web search engine)
• ChatGPT or LaMA

Static Information Gathering: Use an IDE!

6

Consider Documentation and Tutorials Judiciously

7

• Great for discovering entry
points!

• Can teach you about
general structure,
architecture (more on this
later in the semester)

• Often out of date.

• As you gain experience, you
will recognize more of these,
and you will immediately
know something about how
the program works

• Also: discussion boards;
issue trackers

Discussion Boards and Issue Trackers

8

• Software is written by
people.

• How can we talk to
them?

• Fortunately, they
probably
aren’t dead.

• So, you can report
problems on GitHub.

• Or, ask them questions
on StackOverflow.

Dynamic Information Gathering

9

• Build it.

• Run it.

• Change it.

• Run it again.

• How did the behavior change?

Probes: Observe, Control, or “Lightly” Manipulate Execution

10

• print(“this code is running!”)

• Structured logging

• Debuggers

• Breakpoint, eval, step
through / step over

• (Some tools even
support remote
debugging)

• Delete debugging

• Chrome Developer Tools

Step 0: Sanity Check Basic Model + Hypotheses

11

• Confirm that you can build and run the code.

• Ideally both using the tests provided, and by hand.

• Confirm that the code you are running is the code you built

• Confirm that you can make an externally visible change

• How? Where? Starting points:

• Run an existing test, change it

• Write a new test

• Change the code, write or rerun a test that should notice the change

• Ask someone for help

Document and Share Your Findings!

12

• Update README and docs
• Or better: use a
Developer Wiki
• Use Mermaid for
diagrams

• Screencast on Twitch

• Collaborate with others

• Include negative results,
too!

Metrics & Measurement

13

Goals for Today

14

• Use measurements as a decision tool to reduce
uncertainty

• Understand difficulty of measurement; discuss validity
of
measurements

• Provide examples of metrics for software qualities
and process

• Understand limitations and dangers of decisions and
incentives based on measurements

Software Engineering

15

• Software Engineering: Principles,
practices (technical and non-
technical) for confidently building
high-quality software.

What does this mean?

How do we know?

-> Measurement & Metrics

are key concerns

Case Study: Autonomous Vehicles

16

Case Study: Autonomous Vehicles

17

• By what methods can we judge AV software quality (e.g., safety)?

Test Coverage

18

• Amount of code
executed during testing.

• Statement coverage, line
coverage, branch
coverage, etc.

• E.g., 75% branch
coverage -> 3/4 if-else
outcomes have been
executed

Model Accuracy

19

• Train machine-learning
models on labelled data
(sensor data + ground
truth).

• Compute accuracy on a
separate labelled test set.

• E.g., 90% accuracy
implies that object
recognition is right for 90%
of the test inputs.

Failure Rate

20

• Frequency of
crashes / fatalities

• Per 1,000 rides, per
million miles, per
month (in the news)

Mileage

21
Source: waymo.com/safety (September 2021)

What is Measurement?

22

• Measurement is the empirical, objective assignment of
numbers, according to a rule derived from a model or
theory, to attributes of objects or events with the intent
of describing them. – Craner, Bond, “Software
Engineering Metrics: What Do They Measure and How
Do We Know?”

• A quantitatively expressed reduction of uncertainty
based on one or more observations. – Hubbard, “How
to Measure Anything ...”

Software Quality Metrics

23

• IEEE 1061 definition: “A software quality metric is a
function whose inputs are software data and whose
output is a single
numerical value that can be interpreted as the degree
to which the software possesses a given attribute that
affects its quality.”

• Metrics have been proposed for many quality attributes;
may define own metrics

What Software Qualities Do We Care About?

24

• Functionality (e.g., data
integrity)

• Scalability

• Security

• Extensibility

• Bugginess

• Documentation

• Performance

• Installability

• Availability

• Consistency

• Portability

• Regulatory compliance

What Process Qualities Do We Care About?

25

• On-time release

• Development speed

• Meeting efficiency

• Conformance to processes

• Time spent on rework

• Reliability of predictions

• Fairness in decision making

• Number of builds

• Code review acceptance rate

• Regulatory compliance

• Measure time, costs, actions,
resources, and quality of work
packages; compare with
predictions

• Use information from issue
trackers, communication
networks, team structures, etc...

What People Qualities Do We Care About?

26

• Developers
• Maintainability
• Performance
• Employee satisfaction and well-being
• Communication and collaboration
• Efficiency and flow
• Satisfaction with engineering system
• Regulatory compliance

• Customers

• Satisfaction
• Ease of use
• Feature usage
• Regulatory compliance

Everything is Measurable

27

• If X is something we care about, then X, by definition, must be
detectable.

• How could we care about things like “quality,” “risk,” “security,” or
“public image” if these things were totally undetectable, directly or
indirectly?

• If we have reason to care about some unknown quantity, it is
because we think it corresponds to desirable or undesirable results
in some way.

• If X is detectable, then it must be detectable in some amount.

• If you can observe a thing at all, you can observe more of it or less of
it 21

• If we can observe it in some amount, then it must be measurable.

Why Measure?

28

Measurement for Decision Making

29

• Fund project?

• More testing?

• Fast enough? Secure enough?

• Code quality sufficient?

• Which feature to focus on?

• Developer bonus?

• Time and cost estimation? Predictions reliable?

Trend Analyses

30

Benchmarking Against Standards

31

• Monitor many projects or many modules, get
typical values for metrics

• Report deviations

Antipatterns in Effort Estimation

32

• IBM in the 60s: Would
account in “person-
months”
e.g. Team of 2 working 3
months = 6 person-months

• LoC ~ Person-months ~ $$
$

• Brooks: “Adding manpower
to a late software project
[just] makes it later.”

Measurement is Difficult

33

The Streetlight Effect

34

The Streetlight Effect

35

• A known observational
bias.

• People tend to look for
something only where it’s
easiest to do so.

• If you drop your keys at
night, you’ll tend to look for
it under streetlights.

What could Possibly go Wrong?

36

• Bad statistics: A basic
misunderstanding of
measurement theory and what is
being measured.

• Bad decisions: The incorrect use
of measurement data, leading to
unintended side effects.

• Bad incentives: Disregard for the
human factors, or how the
cultural change of taking
measurements will affect people.

Making Inferences

37

• To infer causation:

• Provide a theory (from domain knowledge, independent of data)

• Show correlation

• Demonstrate ability to predict new cases (replicate/validate)

Spurious Correlations

38

Confounding Variables

39

• If you look only at the coffee consumption → cancer
relationship, you can get very misleading results

• Smoking is a confounder

SWE Research

40

Measurements Validity

41

• Construct validity – Are we measuring what we intended to
measure?

• Internal validity – The extent to which the measurement can
be used to explain some other characteristic of the entity
being measured

• External validity – Concerns the generalization of the findings
to contexts and environments, other than the one studied

Measurements Reliability

42

• Extent to which a measurement yields similar results when applied
multiple times

• Goal is to reduce uncertainty, increase consistency

• Example: Performance
• Time, memory usage
• Cache misses, I/O operations, instruction execution count, etc.

• Law of large numbers
• Taking multiple measurements to reduce error

• Trade-off with cost

McNamara Fallacy

43

McNamara Fallacy

44

• Measure whatever can be easily measured.

• Disregard that which cannot be measured easily.

• Presume that which cannot be measured easily is not
important.

• Presume that which cannot be measured easily does
not exist.

McNamara Fallacy

45

• There seems to be a general misunderstanding to the effect
that a mathematical model cannot be undertaken until
every constant and functional relationship is known to high
accuracy. This often leads to the omission of admittedly
highly significant factors (most of the “intangibles”
influences on decisions) because these are unmeasured or
unmeasurable. To omit such variables is equivalent to
saying that they have zero effect... Probably the only value
known to be wrong...

• J. W. Forrester, Industrial Dynamics, The MIT Press, 1961

Metrics & Incentives

46

• Goodhart’s law: “When a measure becomes a target, it
ceases to be a good measure.”

Simplistic Productivity Measures

47

• Lines of code per day?
• Industry average 10-50 lines/day
• Debugging + rework ca. 50% of time

• • Function/object/application points per month • Bugs
fixed?
• Milestones reached?

Incentivizing Productivity

48

• What happens when developer bonuses are based on

• Lines of code per day?

• Amount of documentation written?

• Low number of reported bugs in their code?

• Low number of open bugs in their code?

• High number of fixed bugs?

• Accuracy of time estimates?

Developer Productivity Myths

49

• Productivity is all about developer activity

• Productivity is only about individual performance

• One productivity metric can tell us everything

• Productivity measures are useful only for managers

• Productivity is only about engineering systems and
developer tools

WARNING!!

50

• Most software metrics are controversial
• Usually only plausibility arguments, rarely rigorously validated
• Cyclomatic complexity was repeatedly refuted, yet is still used
• “Similar to the attempt of measuring the intelligence of a person in terms of
the weight or circumference of the brain”

• Use carefully!

• Code size dominates many metrics

• Avoid claims about human factors (e.g., readability) and quality, unless
validated

• Calibrate metrics in project history and other projects

• Metrics can be gamed; you get what you measure

Summary

51

• Measurement is difficult but important for decision making

• Software metrics are easy to measure but hard to
interpret,
validity often not established

• Many metrics exist, often composed; pick or design
suitable metrics if needed

• Careful in use: monitoring vs incentives

• Strategies beyond metrics

Questions to Consider for Your Projects

52

• What properties do we care about and how do we
measure them?

• What is being measured? Does it (to what degree)
capture the thing you care about? What are its
limitations?

• How should it be incorporated into process?

• What are potentially negative side effects or incentives?

