CEN 501 é:

Software
-ngineering

Fall 2024

University of
Central Florida

&

Dr. Kevin Moran

Week 10 - Class I:

Introduction to
Software Engineering
Research




Administrivia (&

® [ndustry Speaker Next Week!
e Fxams will be graded by Tuesday
e Research Paper Presentation Selection

® Due by end of next week - more details Monday







Software Engineering



Software Engineering

The methods and techniques by which developers
design, create, test, and manage software



Software Engineering

The methods and techniques by which developers
design, create, test, and manage software

Research Goal: Design tailored automated approaches to
help facilitate developer needs throughout the software
development and maintenance lifecycle.



PRACTICAL SIGNIFICANCE




PRACTICAL SIGNIFICANCE

Blend scientific discovery with practical significance



PRACTICAL SIGNIFICANCE

Blend scientific discovery with practical significance

NIy
Google CISCO.

facebook.






How Can We Design Practical Automation?



UNDERSTANDING DEVELOPER NEEDS




MINING SOFTWARE REPOSITORIES

O o Bitbucket
h

GitHub y g

Google Play

A GitLab

<®) SOURCEFORGE




MINING SOFTWARE REPOSITORIES




MINING SOFTWARE REPOSITORIES

<P Source Code
— Files

Screen =
Recordings Qﬂ Bug Reports




LEARNING PATTERNS FROM SOFTWARE DATA




LEARNING PATTERNS FROM SOFTWARE DATA

Software Salient
Repository Data Patterns

»

Machine
Learning



SOFTWARE DEVELOPMENT LIFECYCLE

Requirements
Analysis _\

Maintenance Design

<= | Implementation



HOW SOFTWARE ENGINEERING RESEARCH VWWORKS




SE RESEARCH PROJECT ROADMAP

Design Conduct Survey/ Analyze Write
Study Collect Data Data Paper!
\ 0.0. /! —
' — G Y =
‘ EEDY N —
:( N\ - 2 =
” st /
<’ \
Develop Read _—
ldea Related l : — g @ —_— | —
Work 0 p—

Design Build Evaluate Write
Approach Approach Approach Paper!



TYPICAL SE RESEARCH TOPICS

Al and software engineering:
Search-based software engineering
Machine learning with and for SE
Recommender systems

Autonomic systems and self adaptation

Program synthesis
Program repair

Testing and analysis:
Software testing
Program analysis
Debugging and Fault localization
Programming languages
Performance
Mobile applications

Software analytics:
Mining software repositories
Apps and app store analysis
Software ecosystems
Configuration management
Software visualization

Dependability:
Formal methods
Validation and Verification
Reliability and Safety
Privacy and Security
Embedded and cyber-physical systems

Software evolution:
e Evolution and maintenance
e APl design and evolution
* Release engineering and DevOps
e Software reuse
e Refactoring
e Program comprehension
e Reverse engineering

Social aspects of software engineering:
Human aspects of software engineering
Human-computer interaction
Distributed and collaborative software engineering
Agile methods and software processes
Software economics
Crowd-based software engineering
Ethics in software engineering
Green and sustainable technologies

Requirements, modeling, and design:
Requirements Engineering

Privacy and Security by Design

Modeling and Model-Driven Engineering
Software Architecture and Design
Variability and product lines

Software services



SE RESEARCH VENUES

Conferences

International Conference on
Software Engineering (ICSE)

Symposium on the Foundations
of Software Engineering (FSE)

International Conference on
Automated Software Engineering (ASE)

International Conference on Software
Maintenance & Evolution (ICSME)

International Conference on Mining
Software Repositories (MSR)

International Symposium on Software
Testing and Analysis (ISSTA)

Journals

|EEE Transactions on
Software Engineering

ACM Transactions on
Software Engineering
& Methodology

Springer Empirical
Software Engineering



Kevin Moran, Ph.D.
Assistant Professor; CS
Director of the SAGE Research Lab
University of Central Florida

Deep Learning & Software Engineering

A Retrospective and New Directions

@



@ GitHub COpilOt Signup >

Technical Preview

Your Al pair programmer

With GitHub Copilot, get suggestions for whole lines or entire functions right inside your editor.

sentiment.ts

#!/usr/bin/env ts-node

import { fetch } from "fetch-h2";



Talk OQutline

Topic 1 - Background: The Evolution of Machine Learning
(ML) to Deep Learning (DL)

Topic 2- DL4SE: The Current State of Research

Topic 3 - Looking Forward: Future Directions and Paths
Forward



Topic 1 - Background: The Evolution of Machine
Learning to Deep Learning




What 1s Machine Learning?

A branch of Artificial Intelligence that
allows computers to infer patterns

from data, which can be used for the
prediction of new data points




The Hierarchy of Artificial Intelligence

Artificial Intelligence

ﬂ/lachine Learning

/Representational Learning

Deep Learning




Machine Learning Taxonomy

Supervised Unsupervised
Learning Learning

Continuous Categorical

T Variable Not Avai
Target Variable Target Variable arget Variable Not Available

Classification Association

Housing Price Customer Grocery Bag

Medical Imaging

Prediction Segmentation Analysis




Machine Learning Taxonomy

Semi-Supervised Reinforcement
Learning Learning

_ , Categorical Target Variable
Categorical Target Variable Target Variable NSTNEHE S

Classification Clustering Classification Control

Text Lane-finding on Optimized

Classification GPS data Marketing DtErless Care




Supervised
Learning

K Nearest
Neighbor

Naive Bayes
Decision Trees
Linear Regression

Support Vector
Machine

ML Representations

Unsupervised Semi-Supervised Reinforcement

Learning

K-means clustering

Association rule
learning

Learning

Self-Training of
Existing Classifiers

Hidden Markov
Models

Multiple Gaussian
Distributions

Semi-supervised
support vector
machines

Learning

Q-Learning

Temporal Difference

Canonical

Representation




Machine Learning vs. Traditional Programming

Data

Machine > Output

Program

Data

Machine *“Program”

Output

10



When do We Need Machine Learning?

Three Conditions: . = -\ +

1. We have an Existing Dataset F v+ v+

The Dat The Patt
2. A pattern exists in the data s S

3. The pattern is not easily
defined by an equation - -
No Possible Equation

1



The Computational Learning Process

Learning Process

A
r I

e
// -

Target Function First Approx. Second Approx.

12



Supervised ML Applied to Image Classification

Important Note!

Our future examples focus on Supervised Learning for Images

However, the same principles apply to other types of data
(natural language and code) and learning methods (Unsupervised
and Reinforcement).




The Five Elements of the Learning Process

4 N/
\- VAN
4 AY4 N
Target .
Function Hypothesis

- J\_ Y,

14



Feature Engineering for “Canonical” Machine Learning

Images Text Source Code

This is a sentence

This is a sentence

Coarse
Learn
Grant
Class




“Canonical” ML Image Classification

On the Large-Scale ImageNet Dataset,
which contains millions of images
from over 1000 categories

Canonical ML technigues have only been
able to achieve ~ 60% accuracy




Shortcomings of Traditional ML Techniques

4 ) 4 )
Manually - N+
Derived Complex = - A2

Kernels - -
Features _ P
- / - /
)

Shallow
Representation

O(1|11(0|1|1]0©

24



The Advent of Deep Learning

e Input i m
1

:&‘ _ Rich Hierarchical
X" — Feature
| |
Feature Feature
Mapping Mapping
OlTj{o]’| 4N — Bird Ollj{o]S |4 — Bear
“Canonical” Machine Learning Deep Learning

25



Supervised
Learning

K Nearest
Neighbor

Naive Bayes
Decision Trees
Linear Regression

Support Vector
Machine

Neural Networks
(Convolutional,
Recurrent, Feed-
forward, etc.

ML Representations

Unsupervised Semi-Supervised Reinforcement

Learning

K-means clustering

Association rule
learning

Autoencoders

Deep Belief
Networks

Generative
Adversarial
Networks (GANSs)

Learning

Self-Training of
Existing Classifiers

Hidden Markov
Models

Multiple Gaussian
Distributions

Semi-supervised
support vector
machines

Neural networks

Autoencoders

Learning

Q-Learning

Temporal Difference

Deep Adversarial
Networks

Deep Q-Learning

Canonical
Representation

Deep
Representation

26



Neurons: The Building Blocks of Rich Features

Input Weights ias

Additional Activation
Functions

l[dentity
Binary Step

Sigmoid
Tanh
Leaky RelLU

Softmax




Neural “Networks” for Rich Embeddings

Visualized
Rich Embedding

Space

Handwritten

Digits

NVTABLHYF =M™
NN NN A X O
AWM — NON\) N
NS O 9O Wi bg 0 oy
BIAPD TGO

NINY T\ @ ¢°
~ g ~"T0NI ™
NNO Mmoo —a Y
ooy A~
MdbIMNN YV

28



Automated Feature Discovery

Code Text (Natural Language)
[ Feature Extraction \ @ ,
| % % | I Feature Extractlon
T I
iy, (|90 ~O-O-o-
N Dt o\ Y
Images
f Feature Extraction \
k Convolutions Pooling - j 29




How Can a Model Learn from Deep Embeddings?

Adjust the Neuron “weights” according to errors
made on a given task.




How Can a Model Learn from Deep Embeddings?

s Ry /
,‘.
y -

Adjustment

=

y)x




How Should the Weights be Updated?

Batch Gradient Decent

Learning
Step

Local Optimal
minimum mihimum

Error Gradient

Mini-
Batch

Gradient
Decent

Stochastic Gradient Decent

Learning
Step

Local Optimal
minimum minimum

Error Gradient

32



CNN-Accuracy

ConvNets have surpassed human levels of
accuracy on the ImageNet classification dataset




Deep Learning Advantages and Drawbacks

Advantages

Does not require
manual feature
engineering

Capable of
Learning Rich,
Hierarchal Data
Representations

Can be trained for
a given task end-
to-end

Disadvantages

Require massive
datasets to
function
effectively

Computationally
expensive to train

Models can
difficult to
interpret (Black
Box)

36



Topic 2 - DL4SE: The Current State of Research




Mining Software Repositories

o Bitbucket

0) M
GitHub >

<& SOURCEFORGE GooglePlay

) GitLab



Automation in Software Engineering Research

@ N Source Code Software +
é J Screenshots

Files Documentation

2 Screen F\ Eual Reborts £ Design
@ Recordings —@® J "ep 52| Documents




Automation in Software Engineering Research

Software Salient
Repository Data Patterns

»

Deep
Learning "



What is the current state-of-the-art of DL4SE?




Systematic Literature Review

###

A Systematic Literature Review on the Use of Deep Learning
in Software Engineering Research

CODY WATSON, Washington & Lee University
NATHAN COOPER, William & Mary

DAVID NADER PALACIO, William & Mary
KEVIN MORAN, George Mason University
DENYS POSHYVANYK, William & Mary

An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate
development tasks are those rooted in the concept of Deep Learning (DL). The popularity of such techniques
largely stems from their automated feature engineering capabilities, which aid in modeling software artifacts.
However, due to the rapid pace at which DL techniques have been adopted it is difficult to distill the current
successes, failures, and opportunities of the current research landscape. In an effort to bring clarity to this cross-
cutting area of work, from its modern inception to the present, this paper presents a systematic literature review
of research at the intersection of SE & DL. The review canvases work appearing in the most prominent SE and
DL conferences and journals and spans 84 papers across 22 unique SE tasks. We center our analysis around
the components of learning, a set of principles that govern the application of machine learning techniques (ML)
to a given problem domain, discussing several aspects of the surveyed work at a granular level. The end result
of our analysis is a research roadmap that both delineates the foundations of DL techniques applied to SE
research, and likely areas of fertile exploration for the future.

CCS Concepts: » Software and its engineering — Software creation and t; Software development
techniques;

Additional Key Words and Phrases: deep learning, neural networks, literature review, software engineering,
machine learning




Systematic Literature Review

Research Questions (RQs) centered upon the “components of learning”



Systematic Literature Review

Research Questions (RQs) centered upon the “components of learning”

Unknown Target Function
frx—>y

'

Training Examples
(xlt }’1) (xnr yn)

Learning
Algorithm
A

Final Hypothesis
g(x) = f(x)

Hypothesis Set
H




Systematic Literature Review

RQ,: Target Function (SE Task)
RQ,: Data (Training/Testing Data)

RQj;: Learning Model (Algorithm
+ Hypothesis Set)

RQ,: Final Hypothesis (Results)

RQ;: Reproducibility and
Replicability

Unknown Target Function
fixoy

Training Examples
(xll Y1) (xnl .Vn)

Final Hypothesis
g(x) ~ f(x)

Hypothesis Set
H




Systematic Literature Review

e Time Period: 2009-(mid)2019

* Venues: ICLR, NeurlPS, FSE, ICML, MSR, ISSTA, ICST,

ICSE, ASE, ICSME, TSE, TOSEM, EMSE, OOPSLA, ICPC,
PLDI, AAAI, 1JCAL.

 Methodology: Following Kitchenham, et.al.

46



SLR Search Process

RQ 1

ISynthesis

Probability i

>
S8, =
g )

Non-
> —

O = e —
% NIPS

1145
Papers

1699 App[y
Papers Inclusion

Criteria

Universe of
S 2 Population

Samples
263 Papers [99% Confidence; 7% Error]
Stratified 124
Sampling Papers
124 Papers [90% Confidence; 7% Error] i
0.12 Diff
Apply .4
Snowballing Quality, 109
Papers
Manual 3
Additions Exc.l e
Criteria
5 5 A4
e |« Taxonomy Data
Analysis Synthesis Extraction




Publication Distribution By Venue

ICSE [ FSE M ICSME ISSTA [ ICST M ICPC
Il ASE MSR TSE EMSE OOPSLA M PLDI

ICML B ICLR [ AAAl [ NeurlPS arXiv




RQ,: Target Function (SE Task)




DL4SE Publications Over Time and SE Tasks

2014

2015

2016

2017

2018

2019

25

| -
O oo

59

26

(=]
N
(=]

40 60

Code Comprehension

Souce Code Generation

Source Code Retrieval & Traceability
Source Code Summarization
Bug-Fixing Process

Code Smells

Software Testing

Generating Non Code Artifacts
Clone Detection

Software Energy Metrics

Program Synthesis

Image To Structured Representation
Software Security

Program Repair

Software Reliability / Defect Prediction
Feature Location

Developer Forum Analysis

Program Translation

Software Categorization

Code Location Within Media
Developer Intention Mining
Software Resource Control

8

10

12

14

16

18 20 22




RQ,: Data (Training/Testing Data)




Data Used in DLASE Approaches by SE Task

[ Cursor Position

Proof Strategies

Certificates

Symbolic Equations

Android Intents & Filters

Karel DSL Grid

Contextual Flow Graphs
Execution Traces

Vision: Images or Video

PPBE Tasks

Time Measurements

LDA Topics

GitHub Issues

Tabular Data

Source Code Diffs

Labeled Ul Components

Bug Report

Program Input-Output Examples
Natural Language Descriptions

\

Source Code

I
[ |
mn
|
I EmmE
] I
0 10 20 30 40

m Code Comprehension \

m Souce Code Generation
Source Code Retrieval & Traceability
B Source Code Summarization
B Bug-Fixing Process
Code Smells
Software Testing
Generating Non Code Artifacts
m Clone Detection
Software Energy Metrics
m Program Synthesis
m Image To Structured Representation
B Software Security
B Program Repair
Software Reliability / Defect Prediction
Feature Location
B Developer Forum Analysis
Program Translation
m Software Categorization
m Code Location Within Media
Developer Intention Mining
Software Resource Control

50 60 70 80 90




Data Processing Techniques by SE Task

\

/60
= Software Resource Control Developer Intention Mining
50 m Code Location Within Media m Software Categorization
Program Translation m Developer Forum Analysis
Feature Location Software Reliability / Defect Prediction
40 m Program Repair m Software Security
m Image To Structured Representation m Program Synthesis
30 Software Energy Metrics m Clone Detection
Generating Non Code Artifacts Software Testing
Code Smells m Bug-Fixing Process
20 m Source Code Summarization Source Code Retrieval & Traceability
m Souce Code Generation m Code Comprehension
10
. -Il-I_-JJ- _-JJ_. .
5 0D & oD S W LA (@ S ¥ O @‘(\0(\. eb o_Qos‘s
o (AT B e o TS Tt TS w&qe 0 o B B R
¢ N o<Qe,<<v&"o‘&x a>o<<>‘e¢‘o<x>°‘o?f
Q(b« & \<<5° <<,<<‘q fou b\(\ r,‘\ © @(0466‘ oo\&‘)oob Qo‘&’ﬂ Q)\(\\)‘ Q’\)Q & “(\\(\“ N \({‘ < <&
& £ $°\)‘ & 0&?}\ R ‘\'b‘(\%@q (00 \’{\'l«e’b & s‘eﬁ* o Q?f“’ =~ 0\6‘%&\ "\;(\ e ‘87’6\?‘6 C,&Q\(\
G <\ ¥ QO &0\ & ® QL o &\‘?o RQ‘ >
™ ORI TS &f 0 ¢ e” > Cz’
'\O\L ,@C\) Q) 0 < N e \Ov\e‘ﬁ‘ \)e,(\c’ 660 \X'\beo 2 5\‘ %\\C
< » A o N\ & (27
eC X< Oe/ =02 ‘\1’ N >
>
o




RQ,: Learning Model (Algorithm + Hypothesis Set)




DL4SE Neural Network Architectures

Variational

FNN-RNN

Tree-LSTM
Encoder-

Recursive

CNN (encoder)

AutoEncoder

Pointer-Net (decoder)

Decoder

Non-Parametric Model
(NPM)

Gaussian

CNN-LSTM

SIAMESE

Neural Networks
for SE

Graph Neural
Network

Deep Belief
Networks

Tailored

Recursive Neural

Log Bilinear

Transformers

Restricted Boltzman
Machines




DL4SE Neural Network Architectures

( Software Resource Control 1Hl
Developer Intention Mining 1§ RNN
Software Categorization Encoder-Decoder s 2
Program Translation [l
Developer Forum Analysis [271 CNN 20
Feature Location Hl FNN o 17
Software Reliability 71 BN
Program Repair 3 AutoEncoder M 9

Software Security [l 2
Image To Structured Representation F2i3
Software Energy Metrics 1l Siamese M4
Clone Detection [El1 2 e
Generating Non Code Artifacts @ 3 12l

Software Testing 4 Rest. Boltzman Mach |3
Code Smells 210

Graph NN [ 7

GANs 13

Bug-Fixing Process = s Deep Belief Networks 12
Source Code Summarization [T Neural Log-Bilinear 1 2
Source Code Retrieval [EIFN 3
Souce Code Generation B2 4 Type-direct. Encoder 1
Program Synthesis SN 14

N | GPU
Code Comprehension @2 7 eura I

\_ 0 5 10 15 20 25 0 20 40




DL4SE Techniques to Combat Overfitting

Early Stopping
Dropout

Data Cleaning

L# Norm Reg.

Large Dataset
Cross Validation
Ensemble

Data Augmentation
Data Balancing
Batch Norm
Gradient Clipping
Hyperparam Tuning
Pretraining

Custom

Did Not Discuss

20

30

40

\

m Code Comprehension
m Souce Code Generation
Source Code Retrieval & Traceability
m Source Code Summarization
m Bug-Fixing Process
m Code Smells
Software Testing
Generating Non Code Related Artifacts
m Clone Detection
Software Energy Metrics
® Program Synthesis
B Image To Structured Representation
m Software Security
m Program Repair
Software Reliability / Defect Prediction
Feature Location
m Developer Forum Analysis
Program Translation
m Software Categorization
m Code Location Within Media
m Developer Intention Mining

m Software Resource Control




RQ,: Final Hypothesis (Results)




DL4SE Benchmarks

r 25 .
Industry Provided
2 Self Generated and Available
m Previous Benchmark
5 m Self Generated
10
1t Ll
i 0 i1l.1
o
, A A i & s & 1 H = m - =K
S o - »
5\00( OO 7;0\\\&\\\1, ) o‘*e%c’ 6266&\031\,‘?,0\& C,&O(\ (\\(@6\% &\OQO)C‘:\&@Q@& C&O & 49\ 6\?;00 2° }I\e’é\:\'\o\(\%o(\&‘o
&€ Oe (’Z’ NGRS (Jobe 5?\ o) @c’e CEESTACS MR CRR ’\ (\&e‘?oo '\&\{\0 0 (&
006\ a’e SN g‘\ e\"’ C\O(\ %“e 6\‘2@ & Q‘O% N %‘\) ?0‘\) = 2 (\QA e
e T OIS S OF €€ oot xS (W
O e"‘ C’ Co g & o QO v @ o
EXMLR o <0 O O © ée\’ RTAMRNY
™ c)o‘> Qo$° <0° & o7 QF P
[ N [ e
\)(C’ (’blx' 'b?o \ﬂ'b"
0 o SN K
(2 0
\_ _J




Claimed DL4SE Impact

(60
50
40
30
24
20
12
10
5 6
: m B
O |
Open Increased Increased Increased Solving Advanced Replacing
Vocabulary ~ Performance Automation/ Understanding Previously  Architecture /  Expertise
Issue Over Efficiency of the Topic ~ Unsolvable Novelty
Predeccesor Problems




Consideration of Occam’s Razor

[33v2 [cs.SE] 24 Jun 2017

Easy over Hard: A Case Study on Deep Learning

Wei Fu, Tim Menzies
Com.Sci., NC State, USA
wiu@ncsu.edu, tim menzies@gmail.com

ABSTRACT

While deep learning is an exciting new technique, the benefits of
this method need to be assessed with respect to its computational
cost. This is particularly important for deep learning since these
learners need hours (to weeks) to train the model. Such long train-
ing time limits the ability of (a) a researcher to test the stability
of their conclusion via repeated runs with different random seeds;
and (b) other researchers to repeat, improve, or even refute that
original work.

For example, recently, deep learning was used to find which
questions in the Stack Overflow programmer discussion forum can
be linked together. That deep learning system took 14 hours to
execute. We show here that applying a very simple optimizer called
DE to fine tune SVM, it can achieve similar (and sometimes better)
results. The DE approach terminated in 10 minutes; i.e. 84 times
faster hours than deep learning method.

We offer these results as a cautionary tale to the software analyt-
ics community and suggest that not every new innovation should
be applied without critical analysis. If researchers deploy some new
and expensive process, that work should be baselined against some
simpler and faster alternatives.

KEYWORDS

Search based software engineering, software analytics, parameter
tuning, data analytics for software engineering, deep learning, SVM,

semantically related, they are considered as linkable knowledge
units.

In their paper, they used a convolution neural network (CNN), a
kind of deep learning method [42], to predict whether two KUs are
linkable. Such CNNs are highly computationally expensive, often
requiring network composed of 10 to 20 layers, hundreds of millions
of weights and billions of connections between units [42]. Even
with advanced hardware and algorithm parallelization, training
deep learning models still requires hours to weeks. For example:

® XU report that their analysis required 14 hours of CPU.
® Le [40] used a cluster with 1,000 machines (16,000 cores) for
three days to train a deep learner.

This paper debates what methods should be recommended to
those wishing to repeat the analysis of XU. We focus on whether
using simple and faster methods can achieve the results that are cur-
rently achievable by the state-of-art deep learning method. Specifi-
cally, we repeat XU’s study using DE (differential evolution [62]),
which serves as a hyper-parameter optimizer to tune XU’s base-
line method, which is a conventional machine learning algorithm,
support vector machine (SVM). Our study asks:

RQ1: Can we reproduce XU’s baseline results (Word Embedding +
SVM)?Using such a baseline, we can compare our methods to those
of XU.

RQ2: Can DE tune a standard learner such that it outperforms
XU’s deep learning method? We apply differential evolution to tune




Consideration of Occam’s Razor

4 A

70 (42.7%)

0\No Consideration ® Varied Model © Baseline Comparison ® Bw




RQs: Reproducibility & Replicability




Non-Reproducibility Factors

N

Wgs®

m Learning Algorithm = Loss Function
m Hyperparameters Training/Val/Testing Details
m Embedding Details m Regularization Techniques

m Exploratory Data Analysis = Extraction Details

{Missing Filtering Details m No Repository )




Resulting Guidelines

For the SE Task that you have
identified, is it feasible to
mine/gather enough data to
suitably model your
hypothesis?

e

Deep Learning may be
applicable

Alternative modes of Analysis
may need to be considered

I

Develop a Data
Extraction process
that can be used to
model the target
function

—|

|




Topic 3 - Looking Ahead: Future Directions
and Paths Forward




NSF Workshop on Deep Learning

& Software Engineering

November 10th & 11th, 2019
San Diego, California




DL4SE and SE4DL

DL4SE: Leveraging Deep Learning Techniques in order to
automate or improve existing software engineering tasks

SE4DL: Where Deep Learning Techniques are viewed as a
new form of software development that needs tool and

process support

68



Future Work on DL4SE




Future Research Directions in DL4SE

4 4 )
Combining Features Leveraging & _5
Learned via DL with Combining —

Existing Empirical Heterogenous po
Knowledge Sources of SEData =
\ \ J
4 N\ [ ) 4 )
Seveloing Systemati.c & Ethicgl &
Architecturas Reproducible Social &
tailored for Research Considerations &q_s
Methodology of DL4SE
\ SE Data j \ j \

J

70




Future Research Directions in DL4SE (cont'd)

(
Designing new
Effectiveness
Metrics for SE-
specific Tasks

\_

ol

il

[Development
of Tailored
“Clean”
Community

\ Datasets

) 4 )
HCI Aspects of Al- n</>
assisted Developer

Tools .,

J \_

4 ) 4
New a New 990
Application ‘}4’ Data
Areas Sources
\_ J g

71



Ethical and Social Considerations of DL4SE

* Al is emitting secrets #45

@ Answered by nat | dtjm asked this question in Report Bugs

ﬂ dtjm 2 days ago

| tried to get it to tell me secrets and it did:




Ethical and Social Considerations of DL4SE

@ nat

Hi folks, this is addressed in the FAQ:

These secrets are almost entirely fictional, synthesized from the training data. GitHub already has a secret scanning

feature that integrates with 50+ partners to disable tokens that are accidentally committed to public repos:

7/ oo

73



HCI Aspects of Al-Assisted Developer Tools




New Application Areas and Data-Sources

Potential SE Tasks

Software Code
Testing Review

Troubleshooting
Bug Tasks
Triaging

Requirements
Engineering

Potential Data Sets

Tail

ailored Graphical

for SE

Tasks Software
Artifacts

IDE
Instrumentation
EDA for
Datasets

75



Combining Empirical Knowledge with Deep Learning

Empirical SE Studies Deep Learning Tools

\d

\ 4

Il
AAA
VvV

g

(il
)

76



Future Work on SE4DL




“Gradient descent can write code better than you. I'm sorry”

-Andrej Karpathy, Director of Al at Tesla

78



“Neural networks are not just another classifier, they represent the beginning
of a fundamental shift in how we write software. They are Software 2.0.”

-Andrej Karpathy, Director of Al at Tesla

79



Software 1.0 vs. Software 2.0

Data
» Output
Program
Data
*“Program”
Output

Neural Net

80



Software 1.0

1. /**

2. Add element in the 1list

3. element to add

4. true if element added, false otherwise
5. */

6. public boolean addElement (Element elem) {
7. if(myList != null){

8. myList.add(elem);

9. return true;

10. }

11. return false;

12. }

81



Software 2.0 = DL-based systems




How is Deep Learning Software 2.0?

83



Optimization by Gradient Descent to Find “The Program”

Program
Search Space

Software 1.0

Learning
1 Step

Optimal

Error Gradient

Software 2.0

optimization

44356 - 0.886]

[4.4556 . 0.887
Tensor 84



Real-world DL-based System (Software 2.0)

Config Data

Collection

Feature
Extraction

Data
Verification

ML
Code
Tools

4 I
Machine
Resources
Management
N /

Process
Management
Tools

Serving
Infrastructure

Monitoring

85



Yesterday's Devs vs. Tomorrow's Devs

Machine 5
Resources Configuration c ”ats
Management oliection

T Serving
nalysis Tools 3
. t'”frta ML Code
structure
Process Monitor Data

ing

Management
Tools

Verification Feature
Extraction




Will Deep Learning encompass all software?



Will Deep Learning encompass all software?

Not quite ...



Will Deep Learning encompass all software?

Not quite ...

But the applications of DL are numerous and growing!



The Transition to Software 2.0

Image Recognition and Understanding

legs of a zebra

red shirt on a man j4elephant is standing
elephant is brown

red and white sign white tennis shoes hands holding a phone  front wheel of a bus

large green

trees - =
L SR ; roof of a
. it Z 2 R e e L e
. J BV it o 5 s Siarwas-¥ building
trunk of an 4213 -
elephant green trees
= . : in the
background
rocks on
ball is A ! Bl olephant
‘ white * ] |
: leg of an
elephant

Lﬂ'
-

\

TR ble * : R T B
; shadow on
.ﬂ ground is brown elephant is standing the ground

8

90




The Transition to Software 2.0

Speech Synthesis
Audio and

Transcription Corpus
- ‘
%
5 / b Synthesized Voice

21



The Transition to Software 2.0

Encoder

Decoder

Machine Translation

l l l l l l l

€ || €1 | €2 |/ €3 |/ 4 |7/ €5 |/ ©s

92



Benefits of Software 2.0

Computationally homogeneous

Simple to bake into silicon

Constant running time

Constant memory use

Portable

Agile

System is capable of “self-optimization”

“Better than programmers” (at least on anything
involving images/video/sound/speech)



Traditional SE Development vs. DL Development

A 4

v

V

4 N
1. Problem & Goals
Definition ]

\ J

4 N

4 N

1. Requirement
Analysis ol

\ J

4 N
2. Design P

\ J

4 N

3. Development @

A 4

.

2. Data Collection §§

J

7

v

.

~\

3. Data Preparatio@

7

. J
( N
4. Testing x
. J
( N

5.Deployment |=g=

\\

a

6. Maintenance

A 4

4. Model Learnin &8

\

\

4 N
5.Model Learning & |,
Integration gl |

\ = )

( N
6. Model
Management

94



SE Challenges for Software 2.0 (or SE4DL)

Software

Maintenance

development B —

challenges

Testing Challenges Debugging Challenges

Other: security, privacy,
explainability, reuse

Deployment Challenges

95



Challenges: Software Development for DL

4 N\ N\ N
Deriving N — Effort =5 Experiment
Requirements = Estimation Management /m %

\_ '\l '\l J

4 N\ [ )

Data Versioning
Labeling Models
\_ O\ J

96



Challenges: Software Maintenance for DL

[

Technical
Debt

\_

\

J

[

Experimental
Code Paths

\_

o
0

J

4 N
Data )
Dependencies
g J
4 N
Configuration
Management ¢C
\ J

-

Reliance on

Pre-Trained
Models

\_

-
Evolving

Hardware +
Software

\_




Challenges: Software Maintenance for DL

« Code and data technical debt (~95% is glue code)

Config Data

Collection

Feature
Extraction

Data
Verification

ML
Code

Tools

-

N

Machine
Resources
Management

\

/

Process
Management
Tools

Serving
Infrastructure

98



Challenges: Testing for DL

-

Testing
Data

A

\_

~

-

Deployment
Testing

\_

N\

AN

-

Non
Determinism

\_

N

Edge
Case

Discovery

-

Performance
Testing

\_




Challenges: Testing for DL

« Datareplaces code and should be tested rigorously

[ Dataset ]

[ Supervised ]

Model
Definition

Loss
Function

[ Evaluation ]

0O NOUVh WNPR

PR RBPRRRERRRRRUO
VWONOTUDAWNRO -

import tensorflow
mnist = tf.keras.

(x_train, y_train
x_train, x_test =

model = tf.keras.
tf.keras.layers.
tf.keras.layers.
tf.keras.layers.
tf.keras.layers.

D

. model.compile(opt

loss
metr

. model.fit(x_train
. model.evaluate(x_

as tf
datasets.mnist

), (x_test, y _test) = mnist.load_data()
x_train / 255.0, x_test / 255.90

models.Sequential([

Flatten(),

Dense(512, activation=tf.nn.relu),
Dropout(0.2),

Dense(10, activation=tf.nn.softmax)

imizer="adam’,
='sparse_categorical_crossentropy’,
ics=["accuracy’])

, y_train, epochs=5)
test, y_test)

Flatten

/—)\—\

Dropout
p=0.2

SoftMax 10

RelLu 512

100




Challenges: Testing for DL

« Datareplaces code and should be tested rigorously;

 We need to test not only the models, but also
production-ready systems;

Machine Monitoring

Data
Resources

Data Verification

S| Collection Management Serving
ML Analysis Tools Infra-
structure
Code
Process

Feature

i Management
Extraction

Tools 101



Challenges: Debugging for DL

4 N\ [ N\ [ )
Requires “Traditional” Lazy
Trained “ﬁ' Deb}uggers Execution %
Model Don'’t Apply !
g  \  \ Y,

4 N [ N\
Bugsin BR

S Bugs can DNN
Dataset Eliami= be Abstract Bugs

- /. /L




Challenges: Debugging for DL

« We can not estimate the results (and debug the model)
until the model is trained

« Traditional debugging works in software 1.0

[€%] ConsoleApplication 3 | % ConsoleApplication3.Program « | @, Main(string([] args) -
= +
fffff space ConsoleApplication3

clas
{ -
tic void Main(string[] args)
int testInt = 1;
for (int i = 0; i < )
{
° ESSEIAE - ;]
}
}
100% ~



Challenges: Debugging for DL

« We can not estimate the results (and debug the model)
until the model is trained

« Traditional debugging does not work in software 2.0

[ Dataset ]

[ Supervised ]

Model
Definition

Loss
Function

[ Evaluation ]

o NOOUVT A WNE

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)

- D

. model.compile(optimizer="adam’,

loss="sparse_categorical_crossentropy’,
metrics=['accuracy’])

. model.fit(x_train, y_train, epochs=5)
. model.evaluate(x_test, y_test)

Flatten

/—)\—\

Dropout
p=0.2
SoftMax 10

Relu 512

104




Challenges: DL Deployment

4 N\ [ N\ [
Feedback Stream Distributed ELFEI
. |
Loops Processing DL @ i
\_ J J
4 N\
Data Data
Modalities @ Formatting
\_ J L




What are the Next Steps?

There is still a lot of work to be done!

SE Research &

ML/DL Research




Acknowledgements — DL4SE Survey

\)

Cody Watson David Nader Palacio

Nathan Cooper g Denys Poshyvanyk
) £

107



Acknowledgements — DLSE Workshop

Co-Chairs

& Denys Poshyvanyk @ Baishakhi Ray

«l

Steering Committee

‘ Prem Devanbu @ Matthew Dwyer
>
. Michael Lowry @ Xiangyu Zhang

\@ Sebastian Elbaum

108



