
CEN 5016:
Software

Engineering

Dr. Kevin Moran

University of
Central Florida

Fall 2024

Week1- Class 2:
Software Archeology

& Anthropology

Administrivia

2

• Let me know if you are not on Ed Discussions

• Assignment 1, Getting started with Git, GitHub, and
Typescript is posted

• Due Tuesday, August 27th at 11:59 pm

• Use Megathread on Ed Discussions to ask
questions

• Course Entrance Survey

• Please complete by Friday at 11:59 pm

Goals for Today

3

• Understand and scope the task of taking on and
understanding a new and complex piece of existing
software

• Appreciate the importance of configuring an effective
IDE

• Contrast different types of code execution environments
including local, remote, application, and libraries

• Enumerate both static and dynamic strategies for
understanding and modifying a new codebase

Software Archeology & Anthropology

4

Context: Big Ole Pile of Code

5

• Chances are that you will need to work with
existing code at some point in your career…

The Challenge?

6

The Challenge?

7

You will never understand the entire system!

So Then: How do I tackle this Codebase?

8

High-Level Strategies

9

• Leverage your previous experiences (languages,
technologies, patterns)

• Consult Documentation, white papers

• Talk to experts, code owners

• Follow best practices to build a working model of a
system

Bad News: There are not many Helpful Resources

10

• Working Effectively with
Legacy Code.
Michael C. Feathers. 2004.

• Re-Engineering Legacy
Software.
Chris Birchall. 2016.

• The Legacy Code
Programmer's Toolbox.
Jonathan Boccara. 2019.

Why? Because of Tacit Knowledge

11

• Tacit knowledge or
implicit knowledge—as
opposed to formalized,
codified or explicit
knowledge—is knowledge
that is difficult to express
or extract; therefore it is
more difficult to transfer to
others by means of writing
it down or verbalizing it.

Why? Because of Tacit Knowledge

12

Today: How to tackle Codebases

13

• Goal: Develop and test a working
model or set of working hypotheses
about how (some part of) a system
works

• Working model: an understanding of
the pieces of the system (components),
and the way they interact (connections)

• Focus: Observation, probes, and
hypothesis testing
• Helpful tools and techniques!

Demo: Android Application

14

Steps to Understand a New Codebase

15

• Look at README.md

• Clone the repo.

• Build the codebase.

• Figure out how to make it run.

• What do you want to mess with?

• Clone and own

• Traceability - Attach a debugger

• View Source

• Find the logs.

• Search for constants (strings, colors, weird integers (#DEADBEEF))

Observation: Software is Full of Patterns

16

• File structure

• System architecture

• Code structure

• Names

• ...

Observation: Software is Massively Redundant

17

• There is always something to copy/use as a starting
point!

Observation: Code Must Run to Do Stuff!

18

Observation: If Code Runs, it Must have a Beginning…

19

Observation: If Code Runs, it Must Exist

20

The Beginning: Entry Points

21

• Locally installed programs: run cmd, OS launch, I/O
events, etc.

• Local applications in dev: build + run, test, deploy (e.g.,
docker)

• Web apps server-side: Browser sends HTTP request
(GET/POST)

• Web apps client-side: Browser runs JavaScript, event
handlers

Code Must Exist: But Where?

22

• Locally installed programs: run cmd, OS launch, I/O events, etc.

• Binaries (machine code) on your computer

• Local applications in dev: build + run, test, deploy (e.g., docker)

• Source code in repository (+ dependencies)

• Web apps server-side: Browser sends HTTP request (e.g., GET,
POST)

• Code runs remotely (you can only observe outputs)

• Web apps client-side: Browser runs JavaScript, event handlers

• Source code is downloaded and run locally (see: browser dev tools!)

Can Running Code be Probed/Understood/Edited?

23

Creating a Model of Unfamiliar Code

24

Information Gathering

25

• Basic needs:
• Code/file search and navigation
• Code editing (probes)
• Execution of code, tests
• Observation of output (observation)

• At the command line: grep and find! (Google for tutorials)

• Many choices here on tools! Depends on circumstance.
• grep/find/etc.
• Knowing Unix tools is invaluable
• A decent IDE
• Debugger
• Test frameworks + coverage reports
• Google (or your favorite web search engine)
• ChatGPT or LaMA

Static Information Gathering: Use an IDE!

26

Consider Documentation and Tutorials Judiciously

27

• Great for discovering entry
points!

• Can teach you about
general structure,
architecture (more on this
later in the semester)

• Often out of date.

• As you gain experience, you
will recognize more of these,
and you will immediately
know something about how
the program works

• Also: discussion boards;
issue trackers

Discussion Boards and Issue Trackers

28

• Software is written by
people.

• How can we talk to
them?

• Fortunately, they
probably
aren’t dead.

• So, you can report
problems on GitHub.

• Or, ask them questions
on StackOverflow.

Dynamic Information Gathering

29

• Build it.

• Run it.

• Change it.

• Run it again.

• How did the behavior change?

Probes: Observe, Control, or “Lightly” Manipulate Execution

30

• print(“this code is running!”)

• Structured logging

• Debuggers

• Breakpoint, eval, step
through / step over

• (Some tools even
support remote
debugging)

• Delete debugging

• Chrome Developer Tools

Step 0: Sanity Check Basic Model + Hypotheses

31

• Confirm that you can build and run the code.

• Ideally both using the tests provided, and by hand.

• Confirm that the code you are running is the code you built

• Confirm that you can make an externally visible change

• How? Where? Starting points:

• Run an existing test, change it

• Write a new test

• Change the code, write or rerun a test that should notice the change

• Ask someone for help

Document and Share Your Findings!

32

• Update README and docs
• Or better: use a
Developer Wiki
• Use Mermaid for
diagrams

• Screencast on Twitch

• Collaborate with others

• Include negative results,
too!

